YubiHSM 2 User Guide

Yubico

Jun 17, 2025

CONTENTS

Introduction 1
YubiHSM 2 Device Specifications 3
2.1 Cryptographic Interfaces 0 e e e e e e e 3
2.2 Advanced Encryption Standard (AES) 3
2.3 RS A e 3
2.4 Elliptic Curve Cryptography (ECC) o o oo 3
2.5 HashingFunctions e 4
2.6 Key Wrap o e e e e e 4
277 Random Numbers e e e e 4
2.8 AHestation L. e e e e e e e 4
2.9 Performance L e e e e e e e e 4
2.10 Storage Capacity L e e e e e e e e e e e e 5
201 Management v i e 5
2.12 Physical Characteristics o o i e e e e e e e e e e e e 5
213 Temperatures i e 5
2.14 HostInterface e e e 5
YubiHSM 2 Software Development Kit (SDK) 7
3.1 System Requirements e e 9
Quick Start Tutorial 11
4.1 SetUpthe Environment e 11
42 StartUp oo e e e e 12
43 SetUp YubiHSM 2 Connection 0 i ittt i e e e e 12
4.4 SeSSIONS . . .o e e e 12
45 OPeN . . v e e e e e e e e e e e e e e 12
4.6 ClOSE . . v o e e e 13
N 1 T 13
4.8 Adding a New AuthenticationKey L o o 13
4.9 Generate a Key for Signing 14
4.10 Prepare to Sign With the New AsymmetricKey 15
411 ExportUnder Wrap o o o i e e e e e e e e e e e e e e e 16
YubiHSM 2 SDK Tools And Libraries 17
5.1 YubiHSM 2 Setup Tool e e e e e e e e 17
52 YubiHSM Shell o o e 18
53 YubiHSM 2 Connector e e e e 30
54 YubiHSM Wrap o e 32
5.5 Libyubihsm L e 32

10

11

12

13

5.6 PythonLibrary e

5.7 Key Storage Provider (KSP) - Windows Only,
5.8 YubiHSM Auth o e
YubiHSM 2: Backup and Restore

6.1 Backup and Restore Using YubiHSM Shell,
6.2 Backup and Restore Using YubiHSM Setup oo Lo
6.3 Backup and Restore Using YubiHSM KSP (Windows Only)
Initial Provisioning and Deployment Guide

7.1 Known Usage Cases v v it ittt et e e e e e e
7.2 HMAC . . . e
7.3 PKCSII/RSA . . o

FIPS Mode Support Guide

8.1 Putting YubiHSM 2 into FIPSMode
8.2 Validatingthe Mode e
8.3 Takingitoutof FIPS Mode e e
Using Key Storage Provider (KSP) - Windows Only

9.1 Export your Existing Private Key and Certificate
9.2 Importthe Target Private Key e e
9.3 Restore the Target Certificate o i i e e e e e e
9.4 Status Codes Reference e
9.5 Example: Creating a Code-Signing Certificate using the Key Storage Provider

PKCS#11 with YabiHSM 2

10.1 Configuration L e e e
10.2 LoggingIn o e e e e e
10.3 PKCS#I11on Windows L oo oottt e e e
10.4 Note for Developers o i it e e e e e e e e e e e e
10.5 PKCS#11 withJAVA L Lo
10.6 Software Operations e e e e e
10.7 PKCS#11 Attributes o o e e e e e e e e e e e e e
10.8 Capabilities and Domains L. e
109 PKCSH#HIL ODbJects o v ot e e e e e e e e e e e
10.10 PKCS#11 Functionso oo ittt i e e e e e e
10.11 PKCS#11 Vendor Definitions
10.12 Configuration File Sample L
10.13 INIT_ARGS Sample o e e e e e e
10.14 PKCS#11 Tool Compatibility, Interoperability and Known Restrictions

Resetting Device to Factory Settings
11.1 Physical Reset o e e e e
11.2 Reset Using YubiHSM Shell

EJBCA Installation and Configuration Guide

12,1 PrerequiSites o o e e e e e e e e e e e e e
12.2 Configuring a New EJBCA Installation,
12.3 Configuring an Existing EJBCA Installation

Using OpenSSH Certificates for Host Login

13.1 Traditional Method e
13.2 OpenSSH CA L o
13.3 OpenSSH Certificates with YubiHSM 2 oo o

41
41
43
43

47
47
47
49

51
51
51
51

53
53
54
54
55
58

63
63
63
64
64
65
66
66
67
69
70
71
71
72
73

79
79
79

81
81
81
82

14

15

16

17

18

19

20

21

22

13.4 SSH Certificate Request o e
13.5 Signing an SSH Certificate Request i e e

OpenSSL with libp11 for Signing, Verifying and Encrypting, Decrypting
14.1 Signing and Verifying e
14.2 Encrypting and Decrypting o e e e e e e e

OpenSSL with YubiHSM 2 via engine_pkecs11 and yubihsm_pkes11

15.1 Example: Creating an Alias 0 0 i e e e e e e e e e
15.2 Example: Generating a Keyinthe Device
15.3 Example: Certificate Request
15.4 Example: Retrieve 64 Bytesof Data
15.5 Example: Addingreqentries e e
15.6 Example: Requesting certificate existing RSAkey
15.7 Example: Self-Signed Certificate Existing RSAKey
15.8 Example: s_server with RSA Key and Certificate
15.9 Example: s_server with ECDSA Key and Certificate

Using OpenSC pkes11-tool
16.1 Creating Digital Signatures L e
16.2 Performing Decryption L e e e e e e e e e

YubiHSM and OpenSSL on Windows
17.1 OVerview o e e e e e e e e e e e e e e e e
17.2 Installation e e e e e e e

Configuring YubiHSM 2 for Java Code Signing

18.1 PrerequiSites L e e
18.2 Basic Configuration of YubiHSM 2
18.3 Configuration File for YubiHSM 2 PKCS#11 oo o o
18.4 Configuration File of Sun JCE PKCS #11 Provider with YabiHSM 2.
18.5 Environment Variables e
18.6 JavaKeystore L e e e e e e e e e
18.7 Linux Bash Script for Generating Keys and Certificates
18.8 Example of How to Execute the Bash Script.
18.9 Listthe Objectson YubiHSM 2 e
18.10 Using YubiHSM 2 with Java Signing Applications
18.11 Signing XML files using YubiHSM 2 L
18.12 Example Java code using YubiHSM 2o oo

Deploying YubiHSM 2 with Active Directory Certificate Services

19.1 Prerequisites and Preparations L
19.2 Key Splitting and Key Custodians o
19.3 Deploying YubiHSM2 with ADCS Overview ittt e et
19.4 Configuring the Windows Registry o
19.5 Setting Up Your Enterprise Certificate Authority

Installing the YubiHSM 2 Tools and Software
20.1 Aboutthe YubiHSM Software e e e
20.2 Installation o . e e e e e e e e e e e e e e e

Verifying the Default Configuration of the YubiHSM 2

Configuring the Primary YubiHSM 2 Device
22.1 Summary of Configuration Steps L. e e e

93
93
94

97
97
97
98
99
99
99
100
100
101

103
104
105

107
107
107

111
111
112
112
112
112
113
116
118
118
119
119
122

127
127
128
128
129
130

133
133
133

135

137
138

23

24

25

26

27

28

29

30

222 Configuration Steps« o o e e e e e e
22.3 Configure Primary YubiSHM 2 Procedure
224 Verifyingthe Setup L L e e e e e e

Configure the YubiHSM 2 Software on Windows
23.1 Configure the KSP Settings in the Windows Registry
23.2 Configure the YubiHSM 2 Connector Service o

Alternative Scenarios with CA Root Key or Subordinate CAs
24.1 Migrating an Existing CA Root Key to YubiHSM 2
242 Subordinate CAS o v i e e e e e e e e e e e e e e e e

Backup and Restore Key Material

25.1 Backupthe YUubiHSM 2 Overview o v i i e e e e e e e e e e e e
25.2 Backup and Restore the YubiHSM 2 Procedure Overview
25.3 Restore Keys on the Secondary YubiHSM 2 Device
25.4 Verify the Duplicated YubiHSM 2 e

Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide

26.1 The Host Guardian Service — Guarded Fabric Concept
26.2 HGS Key Protection Service o e e e e
26.3 ScopeofthisGuide e e e e e e
26.4 Prerequisites and Preparations Lo e e e e e e e
26.5 Basic Setup of YubiHSM 2 and Host Guardian Service
26.6 Create Signing and Encryption Keysfor HGS

YubiHSM 2 for Microsoft SQL Server Deployment Guide

27.1 YubiHSM 2 for Microsoft SQL Server Guide
27.2 Introduction to Always Encrypted L Lo
27.3 Prerequisites and Preparations
27.4 Basic Setup of YubiHSM 2 and SQL Server. e
27.5 Use SSMS to Generate the CMK and CEK
27.6 Validate Generationof the CMK L
27.7 Use PowerShell Script to Generate the CMK and CEK
27.8 Encrypt Database Columns L e
27.9 Configure SSMS for Database Encryption

YubiHSM 2 with Key Storage Provider for Windows Server

28.1 Configure YubiHSM 2 Key Storage Provider (KSP) for Microsoft Windows Server
28.2 Aboutthe YubiHSM Software e
28.3 Prerequisites and Preparations Lo e e e e e e e

Key Splitting and Key Custodians

Core Concepts

30.1 ODJECtS . . v v v i e e e e e e e e e
30.2 ALGORITHMS . . . o e e e e s e e
30.3 AHestation e e e e e e e e e e e e e e
30.4 Capability o e e e e e e e e
305 Domainl e e e e e e e e e e e e e
30.6 Effective Capabilities (Tying It All Together)
30.7 EITOIS . . o v o o e e e
30.8 FIPS . . o e
30.9 Label e
30.10 LOogs . o o o e e e e e e e

145
145
147

149
149
149

153
153
154
155
158

159
159
160
161
161
161
163

167
167
167
168
169
172
173
178
182
189

193
193
193
194

195

30.11 ObjectID o o 215

3012 OPHONS .« . v v v e 216
3013 Origin. v o o e e e e e e e e e 216
30,14 SeqUENCe L v i e e e e e e e e e e e e e e 217
30.15 Session e e e e e e e e e e e 217
31 YubiHSM Command Reference 219
31.1 OPEN SESSION Command 0 e e e s e s 219
31.2 AUTHENTICATE SESSION Command v ittt et 220
31.3 OPEN SESSION ASYMMETRIC Command i 221
314 BLINKDEVICECommand it i e e e 222
31.5 CHANGE ASYMMETRIC AUTHENTICATION KEY Command 224
31.6 CHANGE AUTHENTICATION KEY Command 226
31.7 CLOSE SESSION Command ittt e s e e e e e 227
31.8 CREATE OTP AEAD Command it 229
31.9 CREATE SESSION Command 0 i i ittt e e e e e e e 230
31.10 DECRYPT CBC Command v i i it e e e e e e e e e e e e e e e 231
31.11 DECRYPT ECB Command i i ittt e et e e e e e e e e e e e e 233
31.12 DECRYPT OAEP Command e e e e s 236
31.13 DECRYPT OTP Command o v vt e et e et e e e e e e e e e 236
31.14 DECRYPT PKCSIT Command e e e e e e e 238
31.15 DELETE OBJECT Command i i ittt et e e e e e e e e e e 241
31.16 DERIVE ECDH Command e e e e e e e e e 243
31.17 DEVICE INFO Command e e e e s s 245
31.18 ECHO Command e e e e e 248
31.19 ENCRYPT CBC Command 0 ittt e e e e e e s s e 250
31.20 ENCRYPT ECB Command e e e e e e e e 252
31.21 EXPORT WRAPPED Command ittt e e e e 255
31.22 EXPORT RSA WRAPPED Command it ittt e 257
31.23 EXPORT RSA WRAPPED KEY Command 261
31.24 GENERATE ASYMMETRIC KEY Command 264
31.25 GENERATE HMAC KEY Command ittt it i e e e 267
31.26 GENERATE OTP AEAD KEY Command 269
31.27 GENERATE SYMMETRIC KEY Command 272
31.28 GENERATE WRAPKEY Command 275
31.29 GET DEVICE PUBLIC KEY Command 279
31.30 GETLOG ENTRIES Command e e e e e 280
31.31 GETOBJECTINFO Command it e e e e e e 283
31.32 GET OPAQUE Command e e e e e e e e e e e e 285
31.33 GET OPTION Command i ittt e e e e e e e e e e e e e e e e e e e 288
31.34 GET PSEUDO RANDOM Command ittt 289
31.35 GETPUBLIC KEY Command ittt i e e e e 291
31.36 GET STORAGE INFO Command o v ittt it e et e e e e e e e e e e e 294
31.37 GET TEMPLATE Command i e e e e e e e e 296
31.38 IMPORT WRAPPED Command it et e e e e e e 298
31.39 IMPORT RSA WRAPPED Command 300
31.40 IMPORT RSA WRAPPED KEY Command 303
31.41 LISTOBJECTS Command 0 i it e e e e e e e e e e e 307
31.42 PUT ASYMMETRIC KEY Command 311
31.43 PUT ASYMMETRIC AUTHENTICATION KEY Command 312
31.44 PUT AUTHENTICATION KEY Command 315
31.45 PUT HMAC KEY Command it i e e s e e e e e 318
31.46 PUT OPAQUE Command 0 e e e e e s s e 321
3147 PUTOTP AEAD KEY Command ittt i e e e 324

32

33

31.48 PUT SYMMETRICKEY Command ittt 326

31.49 PUT TEMPLATE Command 0 it e e e e e e e e e 329
31.50 PUT WRAP KEY Command @ et e e e e e 332
31.51 PUT PUBLIC WRAPKEY Command i ittt 335
31.52 RANDOMIZE OTP AEAD Command it 339
31.53 RESETDEVICE Command ittt it e e e e e e e e e 341
31.54 REWRAPOTP AEAD Command ittt e e e e 342
31.55 SESSION MESSAGE Command o 0 ittt et e e e e e e e 343
31.56 SET INFORMAT Command o i e e e e e e e e e e e 344
31.57 SETLOG INDEX Command v ittt e s e e e e e e 345
31.58 SET OPTION Command o o i vt i e e e e e e e e e e e e e 347
31.59 SET OUTFORMAT Command et e e e e e 349
31.60 SIGN ATTESTATION CERTIFICATE Command 350
31.61 SIGN ECDSA Command e e e e e e e e e e e e 351
31.62 SIGN EDDSA Command o vt e e e e e e e 352
31.63 SIGN HMAC Command o it e e e e e e e e e e e e e 353
31.64 SIGN PKCS1T Command 0ttt e e e e e e e e e e e 354
31.65 SIGN PSS Command o e e e e e e e e 357
31.66 SIGN SSH CERTIFICATE Command ittt et e e e e e 360
31.67 UNWRAP DATA Command e e e s e 363
31.68 VERIFY HMAC Command it i e s e e e e e 364
31.69 WRAP DATA Command e e e e e e e 365
Glossary 367
Copyright 369
33.1 Trademarks e e e e e e e e e e 369
33.2 Disclaimer e e e e e e e e 369
33.3 Contact Information 369
334 LACENSE . . . v v o e e e e e e e e e e e e 370
33.5 Getting Help o o o o e e e e e e e 370
33.6 Feedback e e 370
3377 Document Updated e 370

vi

CHAPTER
ONE

INTRODUCTION

The YubiHSM 2 is a USB-based, multi-purpose cryptographic device for servers. Its diminutive physical size is ideal
for installation directly into internal or external server ports. It is a Hardware Security Module (HSM) that is cost-
effective for all organizations. It provides advanced cryptography including hashing, asymmetric, and symmetric key
cryptography to protect the cryptographic keys that secure critical applications, identities, and sensitive data in an
enterprise for certificate authorities, databases, code signing and more.

YubiHSM 2 FIPS is FIPS 140-2 Level 3 certified device. Certification by National Institute of Standards and Technology
(NIST) can be found at: https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3916

YubiHSM 2 FIPS devices include the text “FIPS” laser-etched onto the surface of the device and allow YubiHSM 2
FIPS to run in FIPS Approved mode.

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3916

YubiHSM 2 User Guide

2 Chapter 1. Introduction

CHAPTER
TWO

YUBIHSM 2 DEVICE SPECIFICATIONS

2.1 Cryptographic Interfaces

* PKCS#11 API version 2.40
* Yubico Key Storage Provider (KSP) to access Microsoft CNG. The KSP is provided as 64-bit and 32-bit DLLs
* Full access to device capabilities through Yubico’s YubiHSM Core Libraries (C, Python)

2.2 Advanced Encryption Standard (AES)

* 128, 192, and 256-bit keys
* Support for Electronic Code Book (ECB), Cipher Block Chaining (CBC) and Counter (CCM) modes

2.3 RSA

* 2048-, 3072-, and 4096-bit keys (with e=65537)
 Signing using PKCS#1v1.5 and PSS
* Decryption using PKCS#1v1.5 and OAEP

2.4 Elliptic Curve Cryptography (ECC)

* Curves: secp224rl, secp256r1, secp256k1, secp384rl, secp521r, bp256r1, bp384rl, bp512r1, Ed25519
* Signing: ECDSA (all except Ed25519), EADSA (Ed25519 only)
* Derivation: ECDH (all except Ed25519)

YubiHSM 2 User Guide

2.5

Hashing Functions

SHA-1, SHA-256, SHA-384, SHA-512

2.6

Key Wrap

Import and export using NIST-approved AES-CCM Wrap with 128-, 196-, and 256-bit keys

2.7

Random Numbers

On-chip True Random Number Generator (TRNG) used to seed NIST SP 800-90A Rev.1 AES-256 CTR_DRBG

2.8

Attestation

Asymmetric key pairs generated on-device may be attested using a device-specific Yubico attestation key and certificate,
or using your own keys and certificates imported into the HSM.

2.9

Performance

Performance varies depending on usage. The accompanying Software Development Kit includes performance tools
that can be used for additional measurements. Example metrics from an otherwise unoccupied YubiHSM 2:

RSA-2048-PKCS1-SHA256: ~139ms
RSA-3072-PKCS1-SHA384: ~504ms
RSA-4096-PKCS1-SHAS512: ~852ms
ECDSA-P224-SHA1: ~64ms
ECDSA-P256-SHA256: ~73ms
ECDSA-P384-SHA384: ~120ms
ECDSA-P521-SHA512: ~210ms
EdDSA-25519-32Bytes: ~105ms
EdDSA-25519-64Bytes: ~121ms
EdDSA-25519-128Bytes: ~137ms
EdDSA-25519-256Bytes: ~168ms
EdDSA-25519-512Bytes: ~229ms
EdDSA-25519-1024Bytes: ~353ms
AES-(128]192]256)-CCM-Wrap: ~10ms
HMAC-SHA-(1]256): ~4ms
HMAC-SHA-(384/512): ~243ms

Chapter 2

. YubiHSM 2 Device Specifications

YubiHSM 2 User Guide

2.10 Storage Capacity
» All data stored as objects. 256 object slots, 126KB max total

* Stores up to 127 rsa2048 or 93 rsa3072 or 68 rsa4096 or 255 of any elliptic curve type, assuming only one
authentication key is present

* Objects: Authentication keys (used to establish sessions); Asymmetric private keys; Opaque binary data objects
(e.g. x500 certificates); Wrap keys; HMAC keys

2.11 Management

* Mutual authentication and secure channel between applications and the YubiHSM 2

* M of Nunwrap key restore via YubiHSM Setup Tool

2.12 Physical Characteristics

» Form factor: nano designed for confined spaces such as internal USB ports in servers
e Dimensions: 12mm x 13mm x 3.1mm

* Weight: 1g

2.13 Temperatures

* Operational range: 0°C - 40°C (32°F - 104°F)
* Storage range: -20°C - 85°C (-4°F - 185°F)

2.14 Host Interface

Universal Serial Bus (USB) 1.x Full Speed (12 Mbit/s) Peripheral with bulk interface

2.10. Storage Capacity 5

YubiHSM 2 User Guide

6 Chapter 2. YubiHSM 2 Device Specifications

CHAPTER
THREE

YUBIHSM 2 SOFTWARE DEVELOPMENT KIT (SDK)

YubiHSM 2 SDK can be downloaded from https://developers.yubico.com/YubiHSM?2/Releases/ and contains the fol-
lowing tools and libraries to interface with YubiHSM 2.

https://developers.yubico.com/YubiHSM2/Releases/

YubiHSM 2 User Guide

Resource Description
bin/libcrypto-3.dll or lib/libcrypto-3.dylib Pre-built OpenSSL (Windows and MacOS only)
bin/yubihsm-setup Deployment tool for YubiHSM 2

bin/yubihsm-wrap
A tool to create wrapped importable
objects offline
bin/yubihsm-connector
The Connector, a tool for providing a
common interface to the device
bin/yubihsm-shell
The shell, a REPL-style tool for
interacting with YubiHSM 2 (and the
Connector) See Note (1)
include/pkcs11/pkes11.h
Common and standard PKCS#11 functions and
constants definitions
include/pkcs11/pkeslly.h
Yubico-specific PKCS#11 functions and

constants definitions

include/yubihsm.h Library functions and constants definitions
Library binary to interact with YubiHSM 2
lib/libyubihsm. {dylib,so}
or bin/libyubihsm.dll
PKCS#11 module to interact with YubiHSM 2

lib/yubihsm_pkcs11.{dylib,so}
or bin/yubihsm_pkes11.dll

python-noarch/* Python implementation of the library
yubihsm-cngprovider-windows- Installer for CNG/KSP for Windows ADCS
amd64.msi (Windows only)

Installer for the Connector (Windows only)

yubihsm-connector-windows-
amd64.msi

Details on these tools and libraries can be found in the later sections of this document.

8 Chapter 3. YubiHSM 2 Software Development Kit (SDK)

YubiHSM 2 User Guide

3.1 System Requirements

The YubiHSM 2 SDK is built and provided for the following operating systems.

Operating System Version Architecture
Debian 10 Buster amd64
Debian 11 Bullseye amdo64
Debian 12 Bookworm amd64
Fedora 39 amd64
Fedora 40 amd64
Ubuntu 14.04 Trusty Tahr amd64
Ubuntu 16.04 Xenial Xerus amd64
Ubuntu 18.04 Bionic Beaver amd64
Ubuntu 20.04 Focal Fossa amd64
Ubuntu 22.04 Jammy Jellyfish amd64
Ubuntu 24.04 Noble Numbat amd64
Windows Server 2019 x64, x86
Windows Server 2022 x64, x86
macOS 14 Sonoma amd64, arm64, universal

3.1. System Requirements

YubiHSM 2 User Guide

10 Chapter 3. YubiHSM 2 Software Development Kit (SDK)

CHAPTER
FOUR

QUICK START TUTORIAL

The purpose of this tutorial is to demonstrate basic functionalities of different key types: Authentication Key, Asym-
metric Key and Wrap Key. We start with a fresh YubiHSM 2 configuration and we proceed in generating a new
Authentication Key. Then we generate an Asymmetric Key for signing purposes. We sign an arbitrary amount of data
and verify that our signature is correct. Part of this documentation is to demonstrate how to backup a key on a second
YubiHSM 2. We do so by wrapping the Asymmetric Key and re-importing it into the same device.

This tutorial covers:
* Basic YubiHSM 2 setup
* Connecting to YubiHSM 2
* Generating an Authkey on the device
* Generating an Asymmetric Object
* Generating a Wrapkey
» Exporting/Importing an Object under wrap

Before proceeding with this document you should be familiar with concepts such as: Sessions, Domains,
Capabilities described in the Core Concepts section.

Note: The following code samples have arbitrary line-breaks to prevent them from running off the page.

4.1 Set Up the Environment

1. Get the latest binaries from SDK download YubiHSM?2/Releases.
2. Install all libraries.

3. Make sure your device is accessible by the connector. This is accomplished either by running the connector as a
superuser or by using an appropriate udev_rule.

11

https://developers.yubico.com/YubiHSM2/Releases
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-connector.html

YubiHSM 2 User Guide

4.2 Start Up

To physically reset the YubiHSM 2 insert the device while holding the touch sensor for 10 seconds. The following steps
use the yubihsm-connector. Connection can also be made using the direct USB mode which is explained later in this
document.

1. Start the connector.

$ yubihsm-connector -d

where —

-d runs the connector in debug mode which may slow down the connector. It is not required for normal
mode of operations.

2. Check the status of your connector and device by using a browser to visit http://127.0.0.1:12345/connector/status.

4.3 Set Up YubiHSM 2 Connection

1. Start yubihsm-shell.

$ yubihsm-shell

2. Connect to YubiHSM 2.

$ yubihsm> connect

4.4 Sessions
Many commands require a Session ID to be specified. To obtain a Session ID use the session open command

followed by an Authentication Key ID and a derivation password.

By default the YubiHSM 2 comes with a pre-installed Authentication Key with Object ID 1 and derivation password
password.

4.5 Open

To open a Session with this Authentication Key use:

yubihsm> session open 1 password
Created session 0

The Session ID is the number found in the line directly below a session open command.
where —

0 Is the Session ID. This value is used to address the newly created Session.

1 is the object ID of the pre-installed Authentication Key.

password is the password of the pre-installed Authentication Key.

12 Chapter 4. Quick Start Tutorial

http://127.0.0.1:12345/connector/status

YubiHSM 2 User Guide

4.6 Close

To close a Session use the command session close followed by the Session ID:

yubihsm> session close 0

where —

0 Is the Session ID.

4.7 List

To list the objects in the device use:

yubihsm> list objects 0

where—

0 Is the Session ID.

Note: If you have closed Session 0, the above command will not work. In that situation, open a new Session and use
the new Session ID in the command above.

4.8 Adding a New Authentication Key

Before moving on, make sure you are familiar with concepts of Capability and Domain

1. For our example we are going to generate an Authentication Key with selected Capabilities and Domains. Learn
more about existing key Types at Objects.

yubihsm> put authkey 0 2 yubico 1,2,3 generate-asymmetric-key,export-wrapped,
—.get-pseudo-random, put-wrap-key, import-wrapped,delete-asymmetric-key,sign-
—,ecdsa sign-ecdsa,exportable-under-wrap, export-wrapped, import-wrapped password

where —

put authkey is the command to create a new authentication key.

0 is the session ID.

2 is the ObjectID of the new authentication key.

yubico is the label of the new authentication key.

1,2, 3 is the domain where the new authentication key will operate within.

generate-asymmetric-key, export-wrapped,get-pseudo-random,put-wrap-key,
import-wrapped,delete-asymmetric-key,sign-ecdsa are the capabilities for the new au-
thentication key.

sign-ecdsa,exportable-under-wrap, export-wrapped, import-wrapped the delegated capabili-
ties for the new authentication key.

password is the password used to derive the new authentication key. This is the password you specify
when opening a session with the YubiHSM using this authentication key.

4.6. Close 13

YubiHSM 2 User Guide

Important: export-wrapped allows the creation of Objects that can perform the EXPORT WRAPPED
Command command.

exportable-under-wrap allows the creation of Objects that can be exported under wrap.

Note: The command above has two distinct sets of Capabilities, separated by a space. This is because
Authentication Keys, in addition to having regular Capabilities, also have Capability.

2. List all Objects to see the newly created Authentication Key.

yubihsm> list objects 0

where —
0 the Session ID used for the open session.

3. Next, let’s start using our newly created Authentication Key to establish an encrypted Session.

yubihsm> session open 2 password
Created session 1

where —

1 is the Session ID assigned to the new Session. We will use this Session ID for most of the commands
below. If at any time the Session is closed or expires because of inactivity, open a new one and use the
correct Session ID.

2 is the ObjectID of the authentication key used to open the session.

password is the password of the authentication key used to open the session.

4.9 Generate a Key for Signing

We now proceed to generate a new Asymmetric Key. In our example we will use this key to sign some data. We will
also export the key under wrap to another YubiHSM, for backup purposes.

Specifically, we will ask the device to generate an Asymmetric Key with ID 100 and a given set of Domains and
Capabilities. We will also specify the kind of Asymmetric Key that we would like to generate, an EC key using the
NIST P-256 curve in this case.

The command is:

yubihsm> generate asymmetric 1 100 label_ecdsa_sign 1,2,3 exportable-under-wrap,sign-
—,ecdsa ecp256

where —

generate is YubiHSM shell command.
asymmetric is the key type to be generated.
1 is the session ID.

100 is the key ID.

label_ecdsa_sign is the label for the new key object.

14 Chapter 4. Quick Start Tutorial

YubiHSM 2 User Guide

1,2, 3 are the domains where the new key will be accessible.
exportable-under-wrap allows this key to be exported under wrap.
sign-ecdsa is allows this key to be used to perform ECDSA signature.
ecp256 specifies NIST P-256 curve for the key.

On success, we will see the message:

Generated Asymmetric key 0x0064

This signifies that an Asymmetric Key with ID 0x0064 (hexadecimal for 100) was generated.

4.10 Prepare to Sign With the New Asymmetric Key

1. Assuming we have a file called data. txt containing the data we would like to sign, we will sign it using ECDSA
with the Asymmetric Key we generated in the previous step.

yubihsm> sign ecdsa 1 100 ecdsa-sha256 data.txt

where —
1 is the Session ID.
100 is the key ID.

By default the output is printed to the standard output and consists of a Base64-encoded signature like the
one below.

MEUCIQDrBgS®4LN5YdyWGiD4iaEjfl1dn+W4cl197uMMXDpoaiQIgEBe/G/
—FgP4cumn03K2XWToAnPvnuVDOngHPiuUSOq59=

2. This behavior can be changed by using the set outformat and set informat commands, and by specifying
an additional output parameter to the sign command.

For now we will store the signature as it is in a temporary file so that we will be able to verify it later.

$ echo MEUCIQDrBqS®4LN5YdyWGiD4iaEjfl1ldn+W4cl197uMMXDpoaiQIgEBe/G/
—FgP4cumn03K2XWToAnPvnuVDOngHPiuUS®q5g= >signature.b64

3. Next, we will extract the public key from the Asymmetric Key on the device and write it to the file
asymmetric_key.pub, so that we can use it to verify the signature we just created.

yubihsm> get pubkey 1 100 asymmetric_key.pub

4. We are going to use OpenSSL for the verification process. Since the signature that we created before is in Base64
format, we need to convert it first. Do so with:

$ base64 -d signature.b64 >signature.bin

5. It is now possible to verify the signature with OpenSSL.

$ openssl dgst -sha256 -signature signature.bin -verify asymmetric_key.pub..
—data.txt
Verified OK

4.10. Prepare to Signh With the New Asymmetric Key 15

YubiHSM 2 User Guide

4.11 Export Under Wrap

Time to export the Asymmetric Key under wrap to a second YubiHSM 2 (in this example, we will export to the same
YubiHSM for convenience).

1. To do that we need a Wrap Key, which fundamentally is an AES key. We use the random number generator built

into the YubiHSM to generate the 16 bytes needed for an AES-128 key.

yubihsm> get random 1 16 9207653411df91fd36c12faa6886d5c4

Important: The result of this command (the bytes) is considered extremely sensitive data and should be stored
safely, and preferably, separate from any production environment.

. We can now store the Wrap Key on the device with ID 200 by doing:

yubihsm> put wrapkey 1 200 label_wrapkey 1,2,3 import-wrapped,export-wrapped sign-
—.ecdsa, exportable-under-wrap 9207653411df91fd36c12faa6886d5c4

Note: For the upcoming export command to be successful, the Delegated Capabilities of the Wrap Key have
to include the Capabilities of the Object being exported. Similarly, for the import command to succeed the
Delegated Capabilities of the Wrap Key have to include the Capabilities of the Object being imported.

. We can now export the Asymmetric Key with ID 100 using the Wrap Key with ID 200 and save it to a file called

wrapped_asymmetric.key.

yubihsm> get wrapped 1 200 asymmetric-key 100 wrapped_asymmetric.key

. We are going to re-import the Asymmetric Key on the same device so we need to first delete the existing one.

yubihsm> delete 1 100 asymmetric-key

. To import the wrapped EC key back into the YubiHSM use:

yubihsm> put wrapped 1 200 wrapped_asymmetric.key

16

Chapter 4. Quick Start Tutorial

CHAPTER
FIVE

YUBIHSM 2 SDK TOOLS AND LIBRARIES

5.1 YubiHSM 2 Setup Tool

The SDK ships with a tool called yubihsm-setup that helps with setting up a device for specific use cases. The tool
assumes familiarity with the key concepts of YubiHSM such as Domain, Capability and Object ID. It currently supports
the following:

* setup for KSP/ADCS and EJBCA;

* restoring a previous configuration

* resetting the device to factory defaults
 exporting all existing objects

The tool is based around the concept of secret-sharing. When setting up Objects, those are exported with a freshly
created Wrap Key. The key is never stored on disk, but rather it is printed on the screen as shares. The key concepts
here are:

* The number of shares, which is the number of parts the key should be divided into.
* The security threshold, which is the minimum number of shares required to reconstruct the Wrap Key.

Besides splitting the Wrap Key into shares, the tool (by default) also exports under wrap all the newly created objects
and saves them in the current directory. This can be used at a later time to “clone” or recover a device. This operation
can be performed either with yubihsm-setup or manually if the Wrap Key is known.

By default, the Authentication Key used to establish a Session with the device is also normally deleted at the end of the
process.

Default behavior can be altered with command line options. For more information, consult the tool’s help.

5.1.1 Setup for EJBCA

When setting up the device for use by EJBCA, the setup tool also generates an asymmetric key pair and an X509
certificate suitable for use as a CA key. The setup tool can be re-run as many times as the number of asymmetric keys
to be generated since each run will produce only one key pair and one corresponding X509 certificate.

Note: Using the --no-new-authkey flag prevents generation of a new Wrap Key and a new Authentication Key.

17

https://developers.yubico.com/yubihsm-setup/

YubiHSM 2 User Guide

5.1.2 How It Works

For the JAVA implementation, a key pair can be used to perform PKCS#11 operations only if the key and its corre-
sponding X509 certificate are stored under the same ID on the device (the value of their CKA_ID attributes is the
same). To store them under the same ID, run the YubiHSM 2 Setup tool with the e jbca subcommand:

1. Generate an Asymmetric Key on the YubiHSM 2.

2. Generate an attestation certificate for the asymmetric key and import it into the YubiHSM 2 under the same ID
as the Asymmetric Key.

The attestation certificate stored on the YubiHSM 2 is, in fact, only a placeholder certificate for the public key. It is
never used by EJBCA because EJBCA stores the CAs’ certificates in a dedicated database.

5.2 YubiHSM Shell

The yubihsm-shell is the administrative and testing tool you can use to interact with and configure the YubiHSM 2
device. All the commands supported by YubiHSM 2 YubiHSM Command Reference can be issued to YubiHSM 2
using YubiHSM 2 Shell.

The Shell can be invoked in two different ways: interactively, or as a command line tool useful for scripting.

Additional information on the various commands can be obtained with the help command in interactive mode or by
referring to the --help argument for the command line mode.

Examples of commands can also be found in the YubiHSM Command Reference reference.

5.2.1 YubiHSM Shell Command Syntax

Commands and subcommands require specific arguments to work. The Shell will return an error message if the com-
mand syntax is incorrect, pointing at the first invalid argument.

Arguments have different types. In interactive mode pre-defined values for command types can be tab-completed (Tab
Completion does not work on Windows). Command arguments are explained in the table below.

18 Chapter 5. YubiHSM 2 SDK Tools And Libraries

https://developers.yubico.com/yubihsm-shell/yubihsm-shell.html

YubiHSM 2 User Guide

Arg Type Description

A Algorithm An algorithm in string form (ex:
ecp256)

B Byte A generic (hex or dec) 8-bit unsigned
number

C capabilities

A list of Capabilities in either form:
hex (ex: OxfHTFTTET) or

string (ex: sign-pkcs,sign-pss,
get-log-entries)

D Domains
A list of Domains, either in hex (ex:
OxfFff) or
string form (ex: 3,5,14)

I Format A format specifier in string form (ex:
base64)

I input data Input data, generally defaults to stan-
dard input

U Number A generic (hex or dec) unsigned
number

(0] Option
A device-global option in string
form
(ex: force-audit)

F output filename
Output file name, generally defaults
to standard
output

E Session The ID of an already-established
Session

S String
A generic string (use quotes for
strings
including white spaces)

T Type An Object Type in string form (ex:
Asymmetric)

W Word A generic (hex or dec) 16-bit un-

signed number

Different commands have different default formats. These can be listed by invoking help on a specific command. For
example, the help sign will display the following message:

5.2. YubiHSM Shell 19

YubiHSM 2 User Guide

pss Sign data using RSASSA-PSS (default input format: binary)
e:session,w:key_id,a:algorithm,i:data=-,F:out=-

As can be seen, the input format is binary. Additionally, arguments to a command that have =- after their type and
name (like i:data and F:out in the example above), use the standard input or standard output by default for reading
data.

Different levels of debug output can be enabled by using the -v flag in command line mode, or by issuing the debug
LEVEL command in interactive mode, where LEVEL is one of all, crypto, error, info, intermediate, none, or
raw.

The following is a list of supported yubihsm-shell commands and their formats.
Blink Device — Blinks the LED of the device to identify it.

Interactive mode

$ blink <session> <seconds=10>

Command line mode

$ yubihsm-shell -a blink-device [--duration <seconds=10>]

Change Authentication Key — Replaces the Authentication Key used to establish the current Session.

Interactive mode

$ change authkey <session> <key_id> <password=->

Close Session — Closes the current session and releases it for re-use.

Interactive mode

$ session close <session>

Create Otp Aead — Creates a Yubico OTP AEAD using the provided data.

Interactive mode

$ otp aead_create <session> <key_id> <key> <private_id> <aead>

Decrypt AES CBC - Decrypt data in AES CBC mode.

Interactive mode

$ decrypt aescbc <session> <key_id> <iv> <data=->

Command line mode

$ yubihsm-shell -a decrypt-aescbc -i <key_id> --iv <iv> --in <data>

Decrypt AES ECB - Decrypt data in AES ECB mode.

Interactive mode

$ decrypt aesecb <session> <key_id> <data=->

Command line mode

20 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

$ yubihsm-shell -a decrypt-aesecb -i <key_id> --in <data>

Decrypt Oaep — Decrypts data encrypted with RSA-OAEP.

Interactive mode

$ decrypt oaep <session> <key_id> <algorithm> <in_data=-> <label=>

Command line mode

$ yubihsm-shell -a decrypt-oaep -i <key_id> -A <decrypt_algorithm> [--
—in <in_data> -1 <oaep_label>]

Decrypt Otp — Decrypts a Yubico OTP with an AEAD and returns counters and timer information (default input format
in binary).

Interactive mode

$ otp decrypt <session> <key_id> <otp> <aead>

Decrypt Pkes1 — Decrypts data encrypted with RSA-PKCS#1v1.5.

Interactive mode

decrypt pkcslvl_5 <session> <key_id> data=->""

Command line mode

$ yubihsm-shell -a decrypt-pkcslvl5 -i <key_id> [--in <data>]

Delete Object — Deletes an object in the device.

Interactive mode

$ delete <session> <object_id> <type>

Command line mode

$ yubihsm-shell -a delete-object -i <object_id> -t <type>

Derive Ecdh — Performs an ECDH key exchange with the private key in the device.

Interactive mode

$ derive ecdh <session> <key_id> <public_key=->

Command line mode

$ yubihsm-shell -a derive-ecdh -i <key_id> [--in <public_key>]

Encrypt AES CBC - Encrypt data in AES CBC mode.

Interactive mode

$ encrypt aescbc <session> <key_id> <iv> <data=->

Command line mode

5.2. YubiHSM Shell 21

YubiHSM 2 User Guide

$ yubihsm-shell -a encrypt-aescbc -i <key_id> --iv <iv> --in <data>

Encrypt AES ECB - Encrypt data in AES ECB mode.

Interactive mode

$ encrypt aesecb <session> <key_id> <data=->

Command line mode

$ yubihsm-shell -a encrypt-aesecb -i <key_id> --in <data>

Export Wrapped — Retrieves an object under wrap from the device. The Object is encrypted using AES-CCM with a
16 bytes MAC and a 13 bytes nonce.

Interactive mode

$ get wrapped <session> <wrapkey_id> <type> <object_id> <file=->

Command line mode

$ yubihsm-shell -a get-wrapped --wrap-id <wrapkey_id> -t <type> -i
—<object_id> [--out <file>]

Generate Asymmetric Key — Generates an Asymmetric Key in the device.

Interactive mode

$ generate asymmetric session> <object_id> <label> <domains>
—.<capabilities> <algorithm>

Command line mode

$ yubihsm-shell -a generate-asymmetric-key -i <object_id> -1 <label> -
—d <domains> -c <capabilities> -A <algorithm>

Generate Hmac Key — Generates an HMAC Key in the device.

Interactive mode

$ generate hmackey <session> <key_id> <label> <domains> <capabilities>
—<algorithm>

Command line mode

$ yubihsm-shell -a generate-hmac-key -i <key_id> -1 <label> -d
—.<domains> -c <capabilities> -A <algorithm>

Generate Otp Aead Key — Generates an OTP AEAD Key for Yubico OTP decryption.

Interactive mode

$ generate otpaeadkey <session> <key_id> <label> <domains>
<,<capabilities> <algorithm> <nonce_id>

Command line mode

22 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

$ yubihsm-shell -a generate-otp-aead-key -i <key_id> -1 <label> -d
—.<domains> -c <capabilities> -A <algorithm> --nonce <nonce_id>

Generate Symmetric Key — Generates a symmetric key.

Interactive mode

$ generate symmetric <session> <key_id> <label> <domains>
—<capabilities> <algorithm>

Com

mand line mode

$ yubihsm-shell -a generate-symmetric-key -i <key_id> -1 <label> -d
—,<domains> -c <capabilities> -A <algorithm>

Generate Wrap Key — Generates a Wrap Key that can be used for export, import, wrap data, and unwrap data.

Interactive mode

$ generate wrapkey <session> <key_id> <label> <domains> <capabilities>
—<delegated_capabilities> <algorithm>

Com

mand line mode

$ yubihsm-shell -a generate-wrap-key -i <key_id> -1 <label> -d
—.<domains> -c <capabilities> --delegated <delegated_capabilities> -A
—<algorithm>

Get Device Info — Gets device version, device serial, supported algorithms and the number of log entries.

Interactive mode

§ get deviceinfo

Com

mand line mode

$ yubihsm-shell -a get-device-info

Get Device Public Key — Retrieves the device’s public key for the purpose of asymmetric authentication.

Interactive mode

§ get devicepubkey

Com

mand line mode

$ yubihsm-shell -a get-public-key

Get Log E

ntries — Fetches all current entries from the device Log Store.

Interactive mode

$ audit get <session>

Com

mand line mode

$ yubihsm-shell -a get-logs

5.2. Yubi

HSM Shell

23

YubiHSM 2 User Guide

Get Object Info — Fetches all metadata about an object.

Interactive mode

$ get objectinfo <session> <object_id> <type>

Command line mode

$ yubihsm-shell -a get-object-info -i <object_id> -t <type>

Get Opaque - Retrieves an Opaque object (like an X.509 certificate) from the device.

Interactive mode

$ get opaque <session> <object-id>

Command line mode

$ yubihsm-shell -a get-opaque -i <object-id>

Get Option — Gets device-global options.

Interactive mode

$ get option <session> <option>

Command line mode

$ yubihsm-shell -a get-option --opt-name <option>

Get Pseudo Random - Extracts a fixed number of pseudo-random bytes from the device, using the internal PRNG.

Interactive mode

$ get random <session> <number_of_bytes> <out=->

Command line mode

$ yubihsm-shell -a get-pseudo-random [--count <number_of_bytes=256> --
—out <out>]

Get Public Key — Fetches the public key of an Asymmetric Key.

Interactive mode

$ get pubkey <session> <key_id>

Command line mode

$ yubihsm-shell -a get-public-key -i <key_id>

Get Storage Info — Reports currently free storage.

Interactive mode

$ get storage <session>

Get Template — Retrieves a Template object from the device.

Interactive mode

24 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

$ put template <session> <object_id> <out_data=->

Com

mand line mode

$ yubihsm-shell -a get-template -i <object_id> [--out <out_data>]

Import Wrapped — Imports a wrapped/encrypted object that was previously exported by an YubiHSM 2 device.

Interactive mode

$ put wrapped <session> <wrapkey_id> <data=->

Com

mand line mode

$ yubihsm-shell -a put-wrapped --wrap-id <wrapkey_id> [--in <file>]

List Objects — Gets a filtered list of objects from the device.

Interactive mode

$ list objects <session> <id=0> <type=any> <domains=0> <capabilities=0>
— <algorithm=any> <label=>

Com

mand line mode

$ yubihsm-shell -a list-objects -t <type> -A <algorithm> [-i <id> -d
—,<domains> -c <capabilities> -1 <label>]

Put Asymmetric Key — Imports an Asymmetric Key into the device.

Interactive mode

$ put asymmetric <session> <object_id> <label> <domains> <capabilities>
« <key=->

Com

mand line mode

$ yubihsm-shell -a put-asymmetric-key -i <object_id> -1 <label> -d
—.<domains> -c <capabilities> [--in <key>]

Put Authentication Key — Stores an Authentication Key in the device.

Interactive mode

$ put authkey <session> <object_id> <label> <domains> <capabilities>
—<delegated_capabilities> <password=->

Com

mand line mode

$ yubihsm-shell -a put-authentication-key -i <object-id> -1 <label> -d
—<domains> -c <capabilities> --delegated <delegated_capabilities> [--
—new-password <password>]

Put Hmac

Key — Stores an HMAC Key in the device.

Interactive mode

5.2. Yubi

HSM Shell

25

YubiHSM 2 User Guide

$ put hmackey <session> <object_id> <label> <domains> <capabilities>
—<algorithm> <key>

Put Opaque — Stores Opaque data (like an X.509 certificate) in the device.

Interactive mode

$ put opaque <session> <object_id> <label> <domains> <capabilities>
—<algorithm> <data=->

Command line mode

$ yubihsm-shell -a put-opaque -i <object-id> -1 <label> -d <domains> -
<»C <capabilities> -A <algorithm> [--in <data>]

Put Otp Aead Key — Imports an OTP AEAD Key used for Yubico OTP Decryption.

Interactive mode

$ put otpaeadkey <session> <key_id> <label> <domains> <capabilities>
—<nonce_id> <key>

Put Symmetric Key — Imports a symmetric key.

Interactive mode

$ put symmetric <session> <key_id> <label> <domains> <capabilities>
—<algorithm> <key>

Command line mode

$ yubihsm-shell -a put-symmetric-key -i <key_id> -1 <label> -d
—<domains> -c <capabilities> -A <algorithm> --in <key>

Put Template — Stores a Template in the device (like the template used when signing SSH certificate).

Interactive mode

$ put template <session> <object_id> <label> <domains> <capabilities>
—<algorithm> <in_data=->

Command line mode

$ yubihsm-shell -a put-template -i <object_id> -1 <label> -d <domains>..
<,-C <capabilities> -A <algorithm> [--in <in_data>]

Put Wrap Key — Imports a key for wrapping into the device.

Interactive mode

$ put wrapkey <session> <object_id> <label> <domains> <capabilities>
—<delegated_capabilities> <key>

Command line mode

$ yubihsm-shell -a put-wrap-key -i <object_id> -1 <label> -d <domains>..
<»-C <capabilities> --delegated <delegated_capabilities> --in <key>

26 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

Randomize Otp Aead — Creates a new OTP AEAD using random data for key and private ID.

Interactive mode

$ opt aead_random <session> <key_id> <aead>

Command line mode

$ yubihsm-shell -a randomize-otp-aead -i <key_id> --in <aead>

Reset Device — Resets and reboots the device, deletes all Objects and restores the default Options and Authentication
Key.

Interactive mode

$ reset <session>

Command line mode

$ yubihsm-shell -a reset

Rewrap Otp Aead - Re-encrypts a Yubico OTP AEAD from one OTP AEAD Key to another OTP AEAD Key.

Interactive mode

$ otp rewrap <session> <key_id_from> <key_id_to> <aead_in> <aead_out>

Session Message — Sends a wrapped command for a previously established session. The command is encrypted and
authenticated.

Set Log Index — Informs the device what the last extracted log entry is so logs can be reused.

Interactive mode

$ audit set <session> <index>

Command line mode

$ yubihsm-shell -a set-log-index --log-index <index>

Set Option — Sets device-global options that affect general behavior.

Interactive mode

$ put option <session> <option> <value>

Command line mode

$ yubihsm-shell -a put-option --opt-name <option> --opt-value <value>

Sign Attestation Certificate — Gets attestation of an Asymmetric Key in the form of an X.509 certificate.

Interactive mode

$§ attest asymmetric <session> <key_id> <attest_id=0 <file=->

Command line mode

5.2. YubiHSM Shell 27

YubiHSM 2 User Guide

$ yubihsm-shell -a sign-attestation-certificate -i <key_id> --
—.attestation-id <attest_id> [--out <file>]

Sign Ecdsa — Computes a digital signature using ECDSA on the provided data.

Interactive mode

$ sign ecdsa <session> <key_id> <signing_algorithm> <in_data=-> <out-
—data=->

Command line mode

$ yubihsm-shell -a sign-ecdsa -i <key_id> -A <signing_algorithm> [--in
—.<in_data> --out <out_data>]

Sign Eddsa — Computes a digital signature using EdDSA on the provided data.

Interactive mode

$ sign eddsa <session> <key_id> <algorithm> <data=-> <out=->

Command line mode

$ yubihsm-shell -a sign-eddsa -i <key_id> -A <algorithm> [--in <data> -
—-out <out>]

Sign Hmac — Performs an HMAC operation in the device and returns the result.

Interactive mode

$ hmac <session> <object_id> <data_to_sign=- in hex> <out=->

Command line mode

$ yubihsm-shell -a sign-hmac -i <object_id> [--in <data_to_sign_in_hex>
— --in <out_data>]

Sign Pkces1 — Computes a digital signature using RSA-PKCS1v1.5 on the provided data.

Interactive mode

$ sign pkcslvl_5 <session> <object_id> <algorithm> <data=-> <out=->

Command line mode

$ yubihsm-shell -a sign-pkcslvl5 -i <object_id> -A <algorithm> [--in
—,<data> --out <out>]

Sign Pss — Computes a digital signature using RSA-PSS on the provided data.

Interactive mode

$ sign pss <session> <key_id> <signing_algorithm> <in_data=-> <out_
~file=—>

Command line mode

28 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

$ yubihsm-shell -a sign-pss -i <key_id> -A <signing_algorithm> [--in
—<in_data> --out <out_file>]

Sign Ssh Certificate — Produces an SSH Certificate signature (only works with RSA keys).

Interactive mode

$ certify <session> <key_id> <template_id> <algorithm> <in_data_in_
—binary_format=-> <out_data=->

Command line mode

$ yubihsm-shell -a sign-ssh-certificate -i <key_id> --template-id
—<template_id> -A <algorithm> [--in <in_data_in_binary_format> --out
—<out_data>]

Unwrap Data — Decrypts (unwraps) data using a Wrap Key.

Interactive mode

$ decrypt aesccm <session> <key_id> <data=->

Verify Hmac — Verifies a generated HMAC

Wrap Data — Encrypts (wraps) data using a Wrap Key.

Interactive mode

$ encrypt aesccm <session> <key_id> <data=->

5.2.2 YubiHSM 2 Shell Algorithm Names

Following table describes algorithm names to be used with YubiHSM Shell for the algorithms supported by YubiHSM

2.
Name yubihsm-shell name Comment
AES 128 aes128
AES 192 aes192
AES 256 aes256
AES CBC aes-cbc
AES ECB aes-ecb
AES128 CCM WRAP aes128-ccm-wrap
AES192 CCM WRAP aes192-ccm-wrap
AES256 CCM WRAP aes256-ccm-wrap
EC BP256 ecbp256 brainpool256r1
EC BP384 ecbp384 brainpool384r1
EC BP512 ecbp512 brainpool512r1
EC ECDH ecdh
EC K256 eck256 secp256k1
EC P224 ecp224 secp224rl
EC P256 ecp256 secp256rl
EC P384 ecp384 secp384rl
EC P521 ecp521 secp521rl

continues on next page

5.2. YubiHSM Shell

29

YubiHSM 2 User Guide

Table 1 - continued from previous page

Name yubihsm-shell name Comment
ECDSA SHA1 ecdsa-shal
ECDSA SHA256 ecdsa-sha256
ECDSA SHA384 ecdsa-sha384
ECDSA SHAS512 ecdsa-sha512
ED25519 ed25519
HMAC SHA1 hmac-shal
HMAC SHA256 hmac-sha256
HMAC SHA384 hmac-sha384
HMAC SHAS512 hmac-sha512
MGF1 SHA1 mgfl-shal

MGF1 SHA256
MGF1 SHA384
MGF1 SHAS12
Opaque Data

Opaque X509 Certificate
RSA 2048

RSA 3072

RSA 4096

RSA OAEP SHAL1
RSA OAEP SHA256
RSA OAEP SHA384
RSA OAEP SHAS512
RSA PKCS1 SHA1
RSA PKCS1 SHA256
RSA PKCS1 SHA384
RSA PKCS1 SHAS512
RSA PSS SHAI

RSA PSS SHA256
RSA PSS SHA384
RSA PSS SHAS512
SSH Template
Yubico AES Authentication

Yubico Asymmetric
Authentication

Yubico OTP AES128
Yubico OTP AES192
Yubico OTP AES256

mgf1-sha256
mgf1-sha384
mgfl-sha512
opaque-data
opaque-x509-certificate
rsa2048

rsa3072

rsa4096

rsa-oaep-shal
rsa-oaep-sha256
rsa-oaep-sha384
rsa-oaep-sha512
rsa-pkcsl-shal
rsa-pkcs1-sha256
rsa-pkcs1-sha384
rsa-pkecs1-sha512
rsa-pss-shal
rsa-pss-sha256
rsa-pss-sha384
rsa-pss-sha512
template-ssh
aes128-yubico-authentication
ecp256-yubico-authentication

aes128-yubico-otp
aes192-yubico-otp
aes256-yubico-otp

5.3 YubiHSM 2 Connector

The yubihsm-connector performs the communication between the YubiHSM 2 and the applications that use it.

The Connector must have permissions to access the USB device, and different operating systems behave differently
in this regard. The easiest way to get started is to run the Connector with Administrator privileges (e.g. with sudo),
but the safest way to run the Connector is to use your operating system’s configuration to give it only the privileges

necessary to access the YubiHSM 2 USB device.

The Connector is not a trusted component. Sessions are established cryptographically between the application and the

30

Chapter 5. YubiHSM 2 SDK Tools And Libraries

https://developers.yubico.com/yubihsm-connector/

YubiHSM 2 User Guide

YubiHSM 2 using a symmetric mutual authentication scheme that is both encrypted and authenticated.

The Connector is not required to run on the same host as the applications which access it. In that case, configure the
Connector to listen on a different address rather than the default localhost:12345. Make sure that the client has
access. The port number does not need to change, only the address. Also, make sure that OS firewalls are configured
properly to allow access to the host machine on the specified port.

To get information regarding the Connector issue a GET request on the /connector/status URL

5.3.1 HTTPS Connections

As mentioned earlier, the Connector is not meant to be a trusted component. For this reason it defaults to HTTP
connections. It is possible to use HTTPS, however this requires providing a key and a certificate to the Connector.

Another option is to use a reverse proxy such as nginx before the Connector and have that handle TLS.

5.3.2 Sample Configuration

Sample configuration for the Connector: yubihsm-connector-config.yaml

Certificate (X.509)
cert: ""

Certificate key
Key: "

Listening address. Defaults to "localhost:12345".
listen: localhost:12345

Device serial in case of multiple devices
serial: ""

Log to syslog/eventlog. Defaults to "false".
syslog: false

Use to enable host header filtering. Default to "false".

Use this if there is an absolute need to use a web browser on the
host where the YubiHSM 2 is installed to connect to untrusted web
sites on the Internet.

enable-host-whitelist: false

Default list for the host header filter
host-whitelist: localhost,localhost.,127.0.0.1,[::1]

Sample udev rule to be placed into /etc/udev/rules.d/

#This udev file should be used with udev 188 and newer
ACTION!="add|change", GOTO="yubihsm2_connector_end"

Yubico YubiHSM 2

The OWNER attribute here has to match the uid of the process

running the Connector

SUBSYSTEM=="usb", ATTRS{idVendor}=="1050", ATTRS{idProduct}=="0030",

(continues on next page)

5.3. YubiHSM 2 Connector 31

YubiHSM 2 User Guide

(continued from previous page)

OWNER="yubihsm-connector"

LABEL="yubihsm2_connector_end"

5.4 YubiHSM Wrap

Yubihsm Wrap is a tool that allows the creation of importable objects offline. This is useful when bootstrapping secrets,
for example on an air-gapped computer.

The tool requires an unencrypted Wrap Key in binary format and uses that to wrap objects with given Type, Objects,
ALGORITHMS, Object ID, Capability and, where applicable, Delegated Capabilities.

For the resulting Object to be successfully imported on a YubiHSM 2, the Wrap Key used by yubihsm-wrap must
already be present on the device.

Currently not all Object Types are supported. Refer to Known Issues and Limitations for more information.

5.5 Libyubihsm

Libyubihsm is the C library used to communicate natively with a YubiHSM 2. It implements and exposes convenience
functions for all the commands supported by the device. It also allows the sending of unformatted “raw” messages over
an established session or in plain text.

The library is used by:
¢ yubihsm-shell, see YubiHSM Shell Reference
¢ PKCS#11 module, see PKCS#11 with YubiHSM 2 Reference
* KSP, see Key Storage Provider Reference

Documentation of the library API can be found as comments within the header file (yubihsm.h) in the SDK, or as a
pre-built Doxygen bundle.

Libyubihsm includes a connector component to talk to a YubiHSM device. This connector is different from the
yubihsm-connector discussed earlier. This component can be one of the following two types.

5.5.1 HTTP Connector

This kind of Connector talks to yubihsm-connector over http(s), allowing remote access to a YubiHSM2, see Connector
Reference

In order to select this type of backend the connector URL should use the http or https scheme; for example, to use
a local HTTP Connector use http://127.0.0.1:12345.

32 Chapter 5. YubiHSM 2 SDK Tools And Libraries

https://developers.yubico.com/yubihsm-shell/yubihsm-wrap.html
https://developers.yubico.com/YubiHSM2/Releases/Known_issues.html
https://developers.yubico.com/yubihsm-shell/libyubihsm.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-shell.html#hsm2-ref-shell-label
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-pkcs11.html#hsm2-ref-pkcs11-label
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp.html#hsm2-ref-ksp-label
https://developers.yubico.com/YubiHSM2/Releases
https://developers.yubico.com/YubiHSM2/Releases
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-connector.html#hsm2-ref-connector-label
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-connector.html#hsm2-ref-connector-label

YubiHSM 2 User Guide

5.5.2 USB Connector

This kind of Connector is a direct-access USB backend that talks directly with a YubiHSM device. The USB Connector
is built into 1ibyubihsm. This renders it unnecessary to run an additional component (i.e., the external Connector) at
the cost of requiring exclusive access to a YubiHSM device.

To select this type of backend the connector URL should use the yhusb scheme. For example, to use a local device
with serial number 123456 use yhusb://serial=123456.

5.6 Python Library

The Python library allows you to interface with a YubiHSM 2 through both the Connector service and direct USB
connection using the Python programming language. It supports Python 3.8 or later.

The recommended way to install the library is by using pip inside a virtualenv. To create and activate a virtualenv,
run:

$ virtualenv yubihsm

Running virtualenv with interpreter /usr/bin/python3

New python executable in /home/user/yubihsm/bin/python3
Also creating executable in /home/user/yubihsm/bin/python
Installing setuptools, pkg_resources, pip, wheel...done.

$ source yubihsm/bin/activate
(yubihsm) $ pip install yubihsm[http,usb]
Collecting yubihsm-2.0.0

Successfully installed asnlcrypto-0.22.0 cffi-1.10.0 cryptography-1.8.1
enum34-1.1.6 idna-2.5 ipaddress-1.0.18 pycparser-2.17 pyusb-1.0.2
requests-2.13.0 yubihsm-2.0.0

(yubihsm) $

Note: The cryptography dependency uses C extensions, and therefore has some build dependencies. For detailed
instructions, see: https://cryptography.io/en/latest/installation/

from yubihsm import YubiHsm
from yubihsm.objects import AsymmetricKey
from yubihsm.defs import ALGORITHM, CAPABILITY

Connect to the Connector and establish a session using the default
auth key:

hsm = YubiHsm.connect("http://localhost:12345")

session = hsm.create_session_derived(1l, "password")

Create a new EC key for signing:
key = AsymmetricKey.generate(session, 0, "EC Key", 1, CAPABILITY.SIGN_ECDSA, ALGORITHM.
—EC_P256)

Sign a message
data = b'Hello world!'

signature = key.sign_ecdsa(data)

(continues on next page)

5.6. Python Library 33

https://developers.yubico.com/python-yubihsm/
https://cryptography.io/en/latest/installation/

YubiHSM 2 User Guide

(continued from previous page)

Delete the key from the YubiHSM 2
key.delete()

Close session and connection:
session.close()
hsm.close()

5.7 Key Storage Provider (KSP) - Windows Only

The Key Storage Provider (KSP) for Windows Cryptography API: Next Generation (CNG) has been thoroughly tested
with Active Directory Certificate Services (AD CS) plus 2048-bit, 3072-bit, and 4096-bit keys. It also works with other
types of keys, but those have not been tested to the same extent.

The following installs the KSP and the Connector Service, using them for ADCS with the default Authentication Key
(1) and password (password).

When you run the Install-AdcsCertificationAuthority command, you should see the YubiHSM 2 light flash
rapidly, because AD CS uses the KSP to generate a 2048-bit key in hardware. For AD CS to work properly,
Restart-Computer may be needed.

PS1> msiexec /i "yubihsm-connector-windows-amd64.msi" /passive ACCEPT=yes

PS1> msiexec /i "yubihsm-cngprovider-windows-amd64.msi" /passive ACCEPT=yes

PS1> Install-WindowsFeature AD-Certificate -Verbose

PS1> Install-AdcsCertificationAuthority -CAType EnterpriseRootCa \
-CryptoProviderName "RSA#YubiHSM Key Storage Provider" \
-KeyLength 2048 -HashAlgorithmName SHA256 -ValidityPeriod Years \
-ValidityPeriodUnits 5

PS1> Install-AdcsOnlineResponder

If you are using a different Authentication Key, password, or Connector for the KSP, you can specify them as follows
(defaults are shown):

PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \

-name ConnectorURL -Type String -Value http://127.0.0.1:12345
PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \

-name AuthKeysetPassword -Type String -Value password
PS1> Set-ItemProperty -path HKLM:\SOFTWARE\Yubico\YubiHSM \

-name AuthKeysetID -Type DWord -Value 1

Warning: Design considerations for Key Storage Providers in Windows prevent the direct USB functionality of
libyubihsm (Connector URL yhusb: //), therefore it is not supported in this version of the YubiHSM KSP.

The default configuration for the connector is: ProgramData\YubiHSM\yubihsm-connector.yaml - Administrator
rights are required to access the file.

34 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

5.7.1 Additional Documentation for YubiHSM Key Storage Provider

* For instructions on how to move a software-based key into the YubiHSM 2 for use with the KSP, see Move
Software Keys to Key Storage Provider.

* For an example of how to create an HSM-backed code signing certificate for Windows through the KSP, see
Example: Creating a Code-Signing Certificate using the Key Storage Provider.

¢ For more information about status codes, see YubiHSM 2 status codes in Windows.

* For details on how to configure the 32-bit and 64-bit KSP DLLs, please see YubiHSM 2 with Key Storage Provider
for Windows Server.

5.8 YubiHSM Auth

YubiHSM Auth is a new YubiKey module that serves as a key storage for authenticating against a YubiHSM 2 with a
YubiKey instead of just using a session password alone. To leverage this functionality, use the latest release of YubiHSM
2 SDK.

YubiHSM Auth is a YubiKey CCID application that stores the long-lived credentials used to establish secure sessions
to a YubiHSM 2. The secure session protocol is based on Secure Channel Protocol 3 (SCP03). YubiHSM Auth is
supported by YubiKey v5.4.0 and higher.

YubiHSM Auth uses hardware to protect the long-lived credentials for accessing a YubiHSM 2. This increases the
security of the authentication credentials, as compared to the authentication solution for the YubiHSM 2 based on soft-
ware credentials derived from the Password-Based Key Derivation Function 2 (PBKDF2) algorithm with a password
as input.

Note: SCPO3 is always used, with yubihsm-auth or not. This means that authentication is always based on a pair of
128 bit AES keys. These keys can be derived from a password on the client side, using authentication in the Yubico
command line tools.

5.8.1 Credentials and PIN Codes
Each YubiHSM Auth credential consists of two AES-128 keys which are used to derive the three session-specific
AES-128 keys. The YubiHSM Auth application can store up to 32 YubiHSM Auth credentials in the YubiKey.

Each YubiHSM Auth credential is protected by a 16-byte user access code provided to the YubiKey for each YubiHSM
Auth operation. The access code is used to access the YubiHSM Auth Credential to derive the session-specific AES-128
keys.

Storing or deleting YubiHSM Auth credentials requires a separate 16-byte admin access code.

Each access code has a limit of eight retries and optionally, verification of user presence (touch).

5.8. YubiHSM Auth 35

https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-move-sw-keys.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-move-sw-keys.html
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-ksp-status-codes.html
https://developers.yubico.com/YubiHSM2/Releases/
https://developers.yubico.com/YubiHSM2/Releases/
hhttps://docs.yubico.com/hardware/yubikey/yk-tech-manual/scp03-specifics.html

YubiHSM 2 User Guide

5.8.2 YubiHSM 2 Secure Channel

YubiKey YubiHSM Auth application can be used to establish an encrypted and authenticated session to a YubiHSM
2. Although the YubiHSM 2 secure channel is based on the protocol Global Platform Secure Channel Protocol 03
(SCPO03), there are two important differences:

e The YubiHSM 2 secure channel protocol does not use APDUs, so the commands and possible options are not
those of the complete SCP03 specification.

* SCPO3 uses key sets with three long-lived AES keys. Two of these long-lived keys are used for authentication and
the third is used to encrypt new long-lived keys when they’re transferred to the device. Since YubiHSM handles
authentication keys like any other keys, the third SCP03 long-lived key is not required therefore YubiHSM 2
secure channel uses key sets with two long-lived AES keys which are required for authentication.

The YubiHSM 2 authentication protocol uses a set of static credentials called a long-lived key set. This consists of two
AES-128 keys:

* ENC: Used for deriving keys for command and response encryption, as specified in SCP03.
* MAC: Used for deriving keys for command and response authentication, as specified in SCP03.
The identical long-lived keyset is protected in the YubiHSM 2 and in the YubiKey YubiHSM Auth application.

Those long-lived key sets are used by the YubiHSM Auth application to derive a set of three session-specific AES-128
keys using the challenge-response protocol as defined in SCP03:

* Session Secure Channel Encryption Key (S-ENC): Used for data confidentiality.

* Secure Channel Message Authentication Code Key for Command (S-MAC): Used for data and protocol
integrity.

e Secure Channel Message Authentication Code Key for Response (S-RMAC): Used for data and protocol
integrity.

The YubiHSM Auth session-specific keys are output from the YubiKey to the calling library, which uses the session
keys to encrypt and authenticate commands and responses during a single session. After the session is over the session
keys are discarded. Session keys are only used for a single session and are not sensitive after the session is over.

5.8.3 Architecture Overview

The figure below shows how the YubiHSM Auth application fits in to the YubiHSM 2 architecture.

36 Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

- .

~
Appﬁcation |ayer C!Jstﬂrn F‘!(CS #11 M.icros-nf't = YubiHSM Auth
— client client client — — -
i ' CCID application
Microsoft _
. CNG
YubiHSM -
PKCS#1 | Y“;';ﬂﬁ"
) module YubiHSM
Cryptographic software KSP
libraries Generate session
keys
YubiHSM Core Library (libyubihsm) - —
‘ HTTR(S)
Communications layer Connector Establish SCPO3
secure channel
‘ USB
1
. . . Long-lived
YubiHSM 2 (device
Cryptographic hardware i () < '> — credentials

(keysets)

Figure: Architecture Overview

The identical long-lived credentials (key sets) are protected in both the YubiKey YubiHSM Auth application and in the
YubiHSM 2. The YubiHSM-Shell software tool can be used for generating the key sets in the YubiHSM 2, and the
YubiHSM-Auth software tool can be used for importing the same key sets to the YubiKey YubiHSM Auth application.

At the client, the YubiHSM authentication protocol is implemented in the 1ibykhsmauth library, which derives the
three session AES-keys by calling the YubiKey YubiHSM Auth CCID application. The session objects that are created
can be used by the 1ibyubihsm in the communication with YubiHSM.

The YubiHSM session keys are therefore generated on the basis of the long-lived credentials that are protected in the
YubiHSM 2 and YubiKey YubiHSM Auth in conjunction with the SCP03 derivation scheme.

5.8.4 YubiHSM Auth Flowchart

The flowchart below illustrates the authentication protocol communication with YubiHSM using the static keys on
YubiHSM Auth. It is assumed that the YubiHSM and YubiHSM Auth application share the same static keyset. The
steps are explained below.

5.8. YubiHSM Auth 37

YubiHSM 2 User Guide

Y YubiHSM-Shell Libyubihsm YubiHSM2 Libykhsmauth YubiKey:
ser (YubiHSM SDK) (YubiHSM SDK) device (YubiHSM SDK) YubiHSM-Auth
1. Authenticate 2. Open session 3. Open session,
with YubiHSM-Auth Host challenge
5. H5M challenge, 4. HSM challenge,
H5M response, H5M response

Host challenge

6. H5M challenge, 7. HSM challenge,

HSM response, HSM response,

Host challenge, Host challenge,

Credential password Credential password
9. Session keys HE. Session keys

10. Host response 11. Host response

Figure: YubiHSM Auth Flowchart

The following is a description of the steps in the flowchart.

1

1.

0.
11.

The user launches YubiHSM-Shell and enters the commands connect and session open, with the flag ykopen
that indicates that the YubiKey with YubiHSM Auth shall be used.

The YubiHSM-Shell invokes the 1ibyubihsm library, with a request to open a session to the YubiHSM 2.
The 1ibyubihsm library generates a host challenge and opens a session to the YubiHSM 2 device.

The YubiHSM 2 device generates an HSM challenge and generates the session keys based on the HSM challenge,
the host challenge, and the static key set in the YubiHSM 2 device. The YubiHSM 2 returns the HSM challenge
in an HSM response to the 1ibyubihsm library.

The 1ibyubihsm library propagates the host challenge and HSM challenge to the YubiHSM Shell.

The user enters the Credential password for unlocking the static keyset in the YubiHSM Auth application in the
YubiKey. The YubiHSM Shell invokes the 1ibykhsmauth library, with a request to generate session keys.

The 1ibykhsmauth library invokes the YubiHSM Auth application in the YubiKey with the Credential password,
the HSM challenge and host challenge are used as input parameters.

. The Credential password unlocks the static keyset in the YubiHSM Auth application, and the YubiHSM Auth

application generates the session keys based on the static keys, HSM challenge, and host challenge.
The 1libykhsmauth library returns the session keys to YubiHSM Shell.
The YubiHSM Shell acknowledges the protocol handshake to 1ibyubihsm.

The 1ibyubihsm sends the host response to the YubiHSM 2 device. The session keys can now be used for secure
channel communication between YubiHSM-Shell/libyubihsm in the host and the YubiHSM device.

38

Chapter 5. YubiHSM 2 SDK Tools And Libraries

YubiHSM 2 User Guide

5.8.5 YubiHSM-Auth Software Tool

The YubiHSM-Auth software tool is part of the YubiHSM Shell, which is installed with the YubiHSM SDK. YubiHSM-
Auth tool can be used for:

* Storing the YubiHSM Auth credentials on a YubiKey

* Deleting the YubiHSM Auth credentials on a YubiKey

* Listing the YubiHSM Auth credentials on a YubiKey

¢ Changing the YubiHSM Auth management key on a YubiKey

 Checking the number of retries of the YubiHSM Auth credential password
* Checking the version of the YubiHSM Auth application

* Calculating session keys, mainly for debugging and test purposes

* Resetting the YubiHSM Auth application on a YubiKey

First, the YubiHSM 2 device needs to be configured with an authentication key. The default authentication key password
on KeyID=1is setto password, and this should be changed or replaced with other authentication keys. For the examples
in this section, however, it is assumed that the default authentication key is still present on the YubiHSM 2.

In order to generate and store the equivalent YubiHSM Auth credentials on the YubiKey, the yubihsm-auth com-
mand line tool can be used. To invoke YubiHSM-Auth simply run yubihsm-auth with the required commands and
parameters.

To get a list of available commands, parameters and their syntax, run:
yubihsm-auth --help

An example of how to use yubihsm-auth for storing YubiHSM Auth credentials on a YubiKey is shown below:

$ yubihsm-auth -a put --label="default key" --derivation-password="password" --credpwd=
—"MyPassword" --touch=on --mgmkey="00000000000000000000000000000000" --verbose=5
Credential successfully stored

where —
-a put is the action to insert a YubiHSM Auth credential on the YubiKey
--label is the label of the YubiHSM Auth credential on the YubiKey

--derivation-password is used as input to the PBKDF2 algorithm, which is used for generating the two AES-128
keys that constitute the YubiHSM Auth credentials to be stored on the YubiKey

--credpwd is the password protecting the YubiHSM Auth credentials on the YubiKey
--touch is set to ‘on’, which requires the user to touch the YubiKey when accessing the YubiHSM Auth credential
--mgmkey is the management key that is needed for writing the YubiHSM Auth credentials on the YubiKey

--verbose is used to print more information as output

Note: We recommend using an offline air-gapped computer when storing the YubiHSM Auth credentials on the
YubiKey. Now the YubiKey YubiHSM Auth application can be used with YubiHSM Shell for authentication to the
YubiHSM 2.

5.8. YubiHSM Auth 39

https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-shell.html
https://developers.yubico.com/YubiHSM2/Releases/
https://docs.yubico.com/software/yubihsm-2/component-reference/hsm2-ref-shell.html

YubiHSM 2 User Guide

5.8.6 Using YubiHSM-Auth with YubiHSM Shell

It is now possible to authenticate to the YubiHSM 2 device with static credentials that are protected in the YubiKey
application called YubiHSM Auth. For more information on this YubiKey feature and how to configure it, see Using
YubiHSM Auth.

The YubiHSM Shell tool supports authentication with YubiHSM Auth credentials in both interactive mode and com-
mand line mode.

In order to use yubihsm-shell with the YubiHSM Auth-enabled YubiKey in interactive mode, open a session by exe-
cuting the following yubihsm-shell command:

yubihsm> session ykopen <authkey> <label> <password>

Where, in the context of using YubiHSM-Shell with the YubiHSM Auth application, the following parameters are used:
authkey is the identifier of the authentication key in the YubiHSM 2

label is the label of the YubiHSM-Auth credetnials stored in the YubiKey

password is the password that protects the YubiHSM-Auth credentials stored in the YubiKey.

Below is an example of an interactive command with YubiHSM Shell:

yubihsm> session ykopen 1 "default key" "MyPassword"
trying to connect to reader 'Yubico YubiKey OTP+FIDO+CCID O'
Created session 0

To use yubihsm-shell with YubiHSM Auth in command line mode, add the parameter --ykhsmauth-1label that im-
plicitly invokes the YubiHSM Auth application at the YubiKey. Below is an example of how to use YubiHSM Shell in
command line mode:

$ yubihsm-shell --ykhsmauth-label "default key" -p "MyPassword"
-a generate-asymmetric -A rsa2048 -i 11 -c sign-pss -1 Signature_Key °

If the YubiKey is configured to require touch when accessing the YubiHSM-Auth credentials, the user needs to touch
the YubiKey sensor in addition to entering the credential password.

Once the user is authenticated with YubiHSM Auth, all YubiHSM-Shell commands can be used.

40 Chapter 5. YubiHSM 2 SDK Tools And Libraries

CHAPTER
SIX

YUBIHSM 2: BACKUP AND RESTORE

The YubiHSM 2 supports encrypted export and import of objects using a symmetric AES-CCM based scheme.

The examples below assume the default authentication key (0x0001). If you use some other authentication key make
sure that it has the capability put-wrap-key and has the correct delegated capabilities, otherwise you will get a wrong
permissions for operation error.

You can perform these operations using:
* YubiHSM Shell for backing up and restoring
* YubiHSM Setup for backing up and restoring
* YubiHSM Key Storage Provider for backing up and restoring certificate as well as private key.
In all three cases, the process is done by taking the following steps:
1. Create a wrap key, call it wrapkey.
2. Import wrapkey into the primary YubiHSM2.
3. Export other objects in the primary YubiHSM?2 using wrapkey.
4. Import wrapkey into the backup YubiHSM2.
5. Import the objects exported in step 3 into the backup YubiHSM2.

In order for a full backup to be successful, the following conditions need to be fulfilled (any object that does not fulfill
these conditions is not exported):

* wrapkey is accessible in all the domains the other objects are available in.
* wrapkey has delegated capabilities that include all the capabilities any other object has.
* wrapkey has the capabilities export-wrapped and import-wrapped.

 All other objects have the capability exportable-under-wrap.

6.1 Backup and Restore Using YubiHSM Shell

6.1.1 Backup

1. For the purpose of this guide, we will start by generating an asymmetric key that we will then make a backup of.

$ yubihsm-shell -a generate-asymmetric-key -A rsa2048 --capabilities exportable-
—under-wrap, sign-pkcs,decrypt-pkcs

(continues on next page)

41

YubiHSM 2 User Guide

(continued from previous page)

Generated Asymmetric key 0x6e77

OBS: This will generate an asymmetric key accessible in all domains.

2. Start by getting a pseudo random number from the YubiHSM?2 and store it in a file. This will be the wrap key.

$ yubihsm-shell -a get-pseudo-random --count=32 --out=wrap.key

Important: The file wrap.key here contains the Wrap Key loaded into your YubiHSM in clear text. It should
therefore be considered sensitive.

3. Import wrap.key into the primary YubiHSM2.

yubihsm-shell -a put-wrap-key --capabilities export-wrapped,import-wrapped --
—.delegated=sign-pkcs, decrypt-pkcs,exportable-under-wrap --in=wrap.key

Stored Wrap key 0xd581

OBS: This will import a wrap key accessible in all domains.

4. Make an encrypted backup of the Asymmetric Key 0x6e77 in the file key_6e77.yhw.

yubihsm-shell -a get-wrapped --wrap-id=0xd581 --object-id=0x6e77 -t asymmetric-key -
—-out=key_6e77.yhw

6.1.2 Restore

This assumes a fresh device where you want to restore the previously backed up key 0x6e77.

1. Import the wrap key into the backup YubiHSM2.

$ yubihsm-shell -a put-wrap-key -A aes256-ccm-wrap -c export-wrapped, import-
—wrapped --delegated=sign-pkcs,decrypt-pkcs,exportable-under-wrap --in=wrap.key -i.
—0xd581

Stored Wrap key 0xd581

2. Import the Asymmetric key 0x6e77 into the backup YubiHEM?2.

yubihsm-shell -a put-wrapped --wrap-id=0xd581 --in=key_6e77.yhw

Object imported as 0x6e77 of type asymmetric-key

42 Chapter 6. YubiHSM 2: Backup and Restore

YubiHSM 2 User Guide

6.2 Backup and Restore Using YubiHSM Setup

The YubiHSM 2 Setup Tool can be used to backup and restore all exportable objects simultaneously.

6.2.1 Backup

OBS: This assumes that a wrap key fulfilling all the conditions mentioned above already exists in the primary Yu-
biHSM2. For the following command line examples, we will assume that such a key has ObjectID 0xd581.

$ yubihsm-setup dump
Enter the wrapping key ID to use for exporting objects: 0xd581

Successfully exported object Asymmetric with ID 0x6e77 to ./0x6e77.yhw
All done

Note: When creating a wrap key using yubihsm-setup with the subcommand ksp or ejbca, an option is presented
to split the wrap key into shares to be held by different custodians. It would also be possible to set the minimum number
of custodians required to reconstruct the wrap key.

Important: Split and reconstruction of the wrap key is done in the software (yubihsm-setup). The YubiHSM2 itself
is not aware of such split or any shares.

6.2.2 Restore

Running the store command will import all *.yhw files in the current directory. If some of those files are not en-
crypted/wrapped with a wrap key that exists in the backup YubiHSM2, they will not be imported.

$ yubihsm-setup restore

Note: If the wrap key was split, the shares to reconstruct it will need to be provided in this step.

6.3 Backup and Restore Using YubiHSM KSP (Windows Only)

YubiHSM Key Storage Provider (KSP) enables backing up and restoring the keys managed using this tool.

Note: Microsoft Active Directory Certificate Services (ADCS) does not set the NCRYPT_ALLOW_EXPORT_FLAG when
generating a key, either through the setup UI or the Install-ADCSCertificationAuthority PowerShell module.

When creating an ADCS root CA key using the YubiHSM 2, we add the exportable-under-wrap Capability by
default. Backup and restore functionality is therefore available using the following manual processes.

1. Identify Your Private Key Container Name

2. Backup the Target Certificate

6.2. Backup and Restore Using YubiHSM Setup 43

YubiHSM 2 User Guide

3. Backup the Target Private Key
4. Restore the Target Private Key

5. Restore the Target Certificate

6.3.1 Identify Your Private Key Container Name

1. To view the currently installed certificates in the Local Machine “My” store, open an elevated command
prompt/shell by using the certutil command.

PS1> certutil -store My

2. Find the target certificate in the list and then find its Key Container property. The Provider property should be
the same as YubiHSM Key Storage Provider.

3. To identify the certificate, record the Cert Hash property.

6.3.2 Backup the Target Certificate

Using any available means (certmgr.msc, PowerShell, certutil), export the target certificate, but without the private
key in DER format.

Note: The YubiHSM does not provide a mechanism for returning the raw private key to Windows, so generating a
PKCS#12 container is not currently possible.

For example, to export the certificate in .crt ~~format to a file named " “<Cert Hash>.crt, use the com-
mand.

PS1> certutil -split -store My <Cert Hash>.

6.3.3 Backup the Target Private Key

Export the target private key with the 1abel property equal to the Key Container property.
1. Use an Authentication Key with the export-wrapped capability set.

2. Use the instructions for exporting a private key under wrap via yubihsm-shell (see Backup and Restore Using
YubiHSM Shell).

6.3.4 Restore the Target Private Key

Import the target private key file to your backup YubiHSM.
1. Use an Authentication Key with the import-wrapped capability set.

2. Use the instructions for importing a private key under wrap via yubihsm-shell (see Backup and Restore Using
YubiHSM Shell).

The imported key object should have the same Label property as the original object.

44 Chapter 6. YubiHSM 2: Backup and Restore

YubiHSM 2 User Guide

6.3.5 Restore the Target Certificate

Before the certificate is imported to the local machine, it does not have an associated private key.

1. Move the target certificate file generated as per Backup and Restore Using YubiHSM Shell to the target machine
by importing the certificate to the LocalMachine “My” store. Use your preferred method.

2. Re-associate the certificate to the private key by using the -repairstore functionality of certutil.

3. Verify that the target private key is visible via the YubiHSM KSP: list all private keys (and their corresponding
container names - which are equal to the Label property in the YubiHSM visible to the current Authentication
Key).

PS1> certutil -key -csp "YubiHSM Key Storage Provider"

4. Open an elevated prompt and execute the command:

PS1> certutil -repairstore MY <Cert Hash>

5. To verify that the certificate has been associated with the YubiHSM Key Storage Provider and has the correct
Key Container property value, repeat the steps under /dentify Your Private Key Container Name.

6.3. Backup and Restore Using YubiHSM KSP (Windows Only) 45

YubiHSM 2 User Guide

46 Chapter 6. YubiHSM 2: Backup and Restore

CHAPTER
SEVEN

INITIAL PROVISIONING AND DEPLOYMENT GUIDE

This topic covers operations pertaining to the initial provisioning and deployment of YubiHSM 2 devices.

Familiarity with the device, its features and capabilities is assumed.

Important: The YubiHSM 2 ships with a default Authentication Key with a well-known password. It is imperative
that it is removed (single use case) or changed prior to production deployment.

7.1 Known Usage Cases

When only a single application needs to be provisioned, Yubico recommends that all Authentication Keys and material
be provisioned only with Capabilities specific to that use case.

Note: This type of deployment requires devices to be physically reset and re-provisioned (single use case) or changed
should a new use case arise.

7.2 HMAC

1. Establish a session with the default Authentication Key.

yubihsm> connect

Session keepalive set up to run every 15 seconds
yubihsm> session open 1 password

Created session 0

2. Create an Authentication Key for Auditing.

yubihsm> put authkey 0 0 "Audit auth key" all get-log-entries none
$AUDIT_PASS
Stored Authentication key 0xd054

3. Create a Wrap Key for importing application Authentication Keys and secrets.

yubihsm> get random 0 16
5b61e89468cc8f2a274715c78c3d4753
yubihsm> put wrapkey 0 0 "HMAC wrap Key" all import-wrapped

(continues on next page)

47

YubiHSM 2 User Guide

10.

(continued from previous page)

sign-hmac:verify-hmac 5b61e89468cc8£f2a274715c78c3d4753
Stored Wrap key 0xf09a

. Create an Authentication Key for use with the above Wrap Key.

yubihsm> put authkey 0 0 "Provisioning HMAC wrap auth key" all import-wrapped none
< $WRAP_PASS
Stored Authentication key 0xf10f

. Delete the default Authentication Key.

yubihsm> delete 0 1 authentication-key

Create a wrapped Authentication Key and HMAC Key for the application.

echo -ne '\x5b\x61\xe8\x94\x68\xcc\x8f\x2a\x27\x47\x15\xc7\x8c\x3d\x47\x53"' > wrap.

—key

echo $HMAC_PASS | yubihsm-wrap -a aesl128-yubico-authentication -c sign-hmac,verify-

—hmac -d 1 -1 "HMAC auth key" -k wrap.key --in --out auth.out -e none

echo -ne '"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\

—x0b\x0b"' > hmac.key

yubihsm-wrap -a hmac-sha256 -c sign-hmac,verify-hmac -d 1 -1 "HMAC key" -k wrap.key.
<»--in hmac.key --out hmac.out

. Open a Session with the wrap Authentication Key.

yubihsm> session open 0xf10f $WRAP_PASS
Created session 1

Import the two wrapped keys in the new Session.

yubihsm> put wrapped 1 0xf09a auth.out

Object imported as 0x2a74 of type authentication-key
yubihsm> put wrapped 1 0xf09a hmac.out

Object imported as 0Oxdla2 of type hmac-key

Open a session with the new application Authentication Key.

yubihsm> session open 0x2a74 $HMAC_PASS
Created session 2

Run HMAC-SHA?256 Test vector #1 and get expected output.

yubihsm> hmac 2.
—.0xd1a2b0344c61d8db38535ca8afceaf®bf12b881dc200c9833da726e9376c2e32cff7
echo -ne '"\x48\x69\x20\x54\x68\x65\x72\x65"' | openssl dgst -hex -mac hmac -
—macopt hexkey:0b0bObObOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOb -sha256 (stdin)=.
—b0344c61d8db38535ca8afceaf®bf12b881dc200c9833da726e9376c2e32cff7

48

Chapter 7. Initial Provisioning and Deployment Guide

YubiHSM 2 User Guide

7.3 PKCS11/RSA

This example assumes that only RSA operations will be performed and that RSA keys will be generated on device over
PKCS#11. For using the PKCS#11 with YubiHSM 2 a yubihsm_pkcs11.conf file needs to exist and point at the
desired connector.

1. Establish a Session with the default Authentication Key.

yubihsm> connect

Session keepalive set up to run every 15 seconds
yubihsm> session open 1 password

Created session 0

2. Create an Authentication Key for Auditing.

yubihsm> put authkey 0 0 "Audit auth key" all audit none $AUDIT_PASS
Stored Authentication key 0xd054

3. Optionally enable forced audits.

yubihsm> put option 0 force-audit 01

4. Create an Authentication Key for usage with the PKCS11 module.

yubihsm> put authkey 0 ® "PKCS11 RSA" 1 delete-asymmetric-key: generate-asymmetric-
—key:sign-pkcs:sign-pss sign-pkcs:sign-pss $PKCS11_PASS
Stored Authentication key 0xf10f

5. Delete the default Authentication Key.

yubihsm> delete 0® 1 authentication-key

6. Use pkcsl1-tool to generate an RSA key.

pkcsll-tool --module /path/to/yubihsm_pkcsll.so -1 --pin f10£${PKCS11_PASS} -k --
—key-type rsa:2048 --usage-sign --label "RSA key"

Using slot O with a present token (0x0)

Key pair generated:

Private Key Object; RSA

label: RSA key
ID: e77d
Usage: sign
Public Key Object; RSA 2048 bits
label: RSA key
ID: e77d
Usage: none

7.3. PKCS11/RSA 49

YubiHSM 2 User Guide

50 Chapter 7. Initial Provisioning and Deployment Guide

CHAPTER
EIGHT

FIPS MODE SUPPORT GUIDE

Note: This guide only applies to YubiHSM 2 FIPS devices.

8.1 Putting YubiHSM 2 into FIPS Mode

To configure the YubiHSM 2 into the FIPS Approved mode of operation:

1. Use the Set Option service as follows: 4f000405000101 or

put option 0 fips-mode 01

2. Import new Authentication Keys to replace the default values.

8.2 Validating the Mode

To check the mode of operation, use the Get Option service.

get option 0 fips-mode

where-
01 return code indicates the Approved mode.

00 return code indicates the non-Approved mode.

8.3 Taking it out of FIPS Mode

To configure the YubiHSM 2 into the non-Approved mode of operation.
1. Delete all objects on the YubiHSM 2.
2. Use the Set Option service as follows: 4f000405000100 or

put option 0 fips-mode 00

51

YubiHSM 2 User Guide

52 Chapter 8. FIPS Mode Support Guide

CHAPTER
NINE

USING KEY STORAGE PROVIDER (KSP) - WINDOWS ONLY

If the target private key is managed by the Microsoft Software Key Storage Provider, another software provider, or any
other KSP that allows export via PKCS#12 PFX, it is possible to move your key to the YubiHSM 2, but results may

vary.

This process relies on using the -repairstore functionality of the certutil command, so the private key must
only be present via the YubiHSM Key Storage Provider when performing this step. Please refer to the source storage
provider documentation for how to cleanly and completely delete a private key.

Because KSP implementations differ, we recommend testing this procedure using your existing provider before affecting
a live system.

9.1

Export your Existing Private Key and Certificate

Refer to your current KSP documentation on how to obtain a PKCS#12 PFX export of your certificate and private key.

1.
2.

Obtain your PFX file.

Split the certificate from the PFX file using certutil.

PS1> certutil -split -dump <pfx file>

This creates a file named " "<Cert Hash>.crt .

. If you are moving the key to the YubiHSM 2 on the same machine, you must delete the original private key in

your current provider.

PS1> certutil -key

Locate the key that corresponds with the CA. It may look something like this:

Microsoft Software Key Storage Provider:

EXAMPLE-CA abcdefl1234fedcba432labcdef123456_9cfc1053-1b5a-44d7-8a7e-3a8alc0®d0dbo..
—RSA AT_KEYEXCHANGE

. To delete this example private key.

PS1> certutil -delkey -csp "Microsoft Software Key Storage Provider"
—"abcdefl234fedcba432labcdef123456_9cfc1053-1b5a-44d7-8a7e-3 a8alc0dOdbO"

53

YubiHSM 2 User Guide

9.2 Import the Target Private Key

Using the instructions for importing a PFX private key, see PUT ASYMMETRIC KEY Command via yubihsm-shell,
import the target private key file to your YubiHSM 2.

1. Record the Label property of your imported key.

Important: The certutil utility does not provide an easy way to split a key exported from the Software KSP
into an unencrypted PEM file. It may be necessary to use another tool like OpenSSL to convert the key file to an
unencrypted format for import into the HSM.

2. Export the private key.

PS1> openssl pkcsl2 -in <pfx file> -nocerts -out ca.key -nodes

. To remove the passphrase from the private key.

PS1> openssl rsa -in ca.key -out ca.key

9.3 Restore the Target Certificate

. Move the target certificate file (<Cert Hash>.crt) to the target machine.

. Import the certificate to the LocalMachine “My” store via your favorite method.

At this point, the certificate does not have an associated private key. We use the -repairstore
functionality of certutil to re-associate the certificate to the private key.

. Make sure that the target private key is visible via the YubiHSM KSP.

PS1> certutil -key -csp "YubiHSM Key Storage Provider"

This command lists all private keys visible to the current Authentication Key. It also lists the private keys corre-
sponding container names - which are equal to the Label property in the YubiHSM 2.

. Open an elevated prompt and execute the command.

PS1> certutil -repairstore MY <Cert Hash>

. Verify that the certificate has been associated with the YubiHSM KSP and has the correct Key Container

property value.

PS1> certutil -store My

. Inspect the Key Container and Provider properties.

Warning: If you are moving your CA key to the YubiHSM 2 on the same machine, Windows Certificate
Services (CertSvc) on the local machine writes the name of the KSP to its configuration section in the registry.
When signing requests, the certificate service will fail if the KSP name does not match the name in the registry.

. Update the KSP name for the local certificate service.

* Open an elevated prompt and execute the commands.

54

Chapter 9. Using Key Storage Provider (KSP) - Windows Only

YubiHSM 2 User Guide

Provider"

PS1> certutil -setreg CA\CSP\Provider "YubiHSM Key Storage Provider"
PS1> certutil -setreg CA\EncryptionCSP\Provider "YubiHSM Key Storage

» Optionally, if you have multiple CAs on the same machine, or prefer to edit the registry directly. These

settings are located at:

HKLM\System\CurrentControlSet\Services\CertSVC\Configuration\<CAName>\
[CSP | EncryptionCSP]

9.4 Status Codes Reference

The YubiHSM software components have a standard set of status codes to report the status of an HSM operation. To
comply with the expectations of specific platforms, these status codes are converted to the appropriate API status code.

Currently, this translation is only performed for the Windows Key Storage Provider. The error codes, their meanings

and translated values are as follows.

Libyubihsm Error Code

Description

Windows CNG Translation

YHR_BUFFER_TOO_SMALL

YHR_CONNECTION_ERROR

YHR_CONNECTOR_ERROR

YHR_CONNECTOR_NOT_FOUNL

YHR_CRYPTOGRAM_MISMATCE

YHR_DEVICE_AUTHENTICATIO!
_FAILED

Not enough space
to store data

Transport Backend
error

Connector
operation Failed

Unable to find a
suitable connector

Unable to verify
cryptogram

Message encryption /
verification failed

NTE_BUFFER_TOO_SMALL

NTE_DEVICE_NOT_READY

NTE_DEVICE_NOT_READY

NTE_DEVICE_NOT_READY

NTE_BAD_SIGNATURE

NTE_INCORRECT_PASSWORD

continues on next page

9.4. Status Codes Reference

55

YubiHSM 2 User Guide

Table 1 - continued from previous page

Libyubihsm Error Code Description Windows CNG Translation
NTE_SYS_ERR
YHR_DEVICE_COMMAND The HSM attempted to
_UNEXECUTED execute a command,
but it did not

YHR_DEVICE_DEMO_MODE

YHR_DEVICE_INSUFFICIENT
_PERMISSIONS

YHR_DEVICE_INVALID
_COMMAND

YHR_DEVICE_INVALID_DATA

YHR_DEVICE_INVALID_ID

YHR_DEVICE_INVALID_OTP

YHR_DEVICE_INVALID
_SESSION

YHR_DEVICE_LOG_FULL

YHR_DEVICE_OBJECT_EXISTS

complete in allotted
time. The command
has not terminated,
and the current

state of the session
is unavailable

Demo mode, power
cycle device

Wrong permissions
for operation

Invalid command

Malformed command /
invalid data

Illegal ID used

Invalid OTP

Invalid session

Log buffer is full
and forced audit is
set

An object with the
specified ID already
exists

NTE_DEVICE_NOT_READY

NTE_PERM

NTE_NOT_SUPPORTED

NTE_INVALID_PARAMETER

NTE_INVALID_PARAMETER(]

NTE_INCORRECT_PASSWORD

NTE_DEVICE_NOT_READY

NTE_DEVICE_NOT_READY

NTE_EXISTS

continues on next page

56

Chapter 9. Using Key Storage Provider (KSP) - Windows Only

YubiHSM 2 User Guide

Table 1 - continued from previous page

Libyubihsm Error Code Description Windows CNG Translation
Object not found NTE_NOT_FOUND

YHR_DEVICE_OBJECT

_NOT_FOUND

YHR_DEVICE_OK No error NTE_OP_OK

YHR_DEVICE_SESSION_FAILED

YHR_DEVICE_SESSIONS_FULL

YHR_DEVICE_STORAGE_FAILEL

YHR_DEVICE_WRONG_LENGTH
YHR_GENERIC_ERROR
YHR_INIT_ERROR

YHR_INVALID_PARAMETERS

YHR_MAC_MISMATCH

YHR_MEMORY_ERROR

YHR_SESSION
_AUTHENTICATION_FAILED

YHR_SUCCESS

Session creation
failed

All sessions are
allocated

Storage failure

Wrong length
Generic error

Unable to initialize
libyubihsm

Invalid argument to
a function

Unable to verify MAC

The YubiHSM or
software library was
not able to allocate
memory to perform
the requested
operation

Unable to
authenticate session

The operation
completed
Successfully

NTE_DEVICE_NOT_READY

NTE_DEVICE_NOT_READY

NTE_TOKEN_KEYSET
_STORAGE_FULL

NTE_BAD_LEN
NTE_FAIL
NTE_PROVIDER_DLL_FAIL

NTE_INVALID_PARAMETER

NTE_BAD_SIGNATURE

NTE_NO_MEMORY

NTE_INCORRECT_PASSWORD

ERROR_SUCCESS

continues on next page

9.4. Status Codes Reference

57

YubiHSM 2 User Guide

Table 1 - continued from previous page
Libyubihsm Error Code Description Windows CNG Translation

YHR_WRONG_LENGTH NTE_BAD_LEN
This error may occur

if there is a

mismatch between the
YubiHSM firmware
version and
libyubihsm library
version

9.5 Example: Creating a Code-Signing Certificate using the Key Stor-
age Provider

This example will show you how to create a code-signing certificate request using a key generated and stored in the
YubiHSM 2 via the Key Storage Provider (KSP). This type of code-signing certificate is appropriate for use with the
Microsoft signtool utility for digitally signing Windows binaries.

In this example, we use the command line certreq utility. All procedures documented here are available in the
Certificate Manager (certmgr.msc) MMC snap-in if you prefer to use a GUIL

Note: For operations that take input data (from command line or file), releases prior to and including the current
yubihsm?2-sdk release have a size limit - 4kb in interactive mode, or 8kb in non-interactive mode.

9.5.1 Configure the Key Storage Provider

By default, the KSP will use the factory authentication key in slot 1. If the factory authentication key no longer exists
or a different authentication key is desired, the KSP must first be configured with the desired key ID and password.

Note: The configured authentication key must at a minimum have the capabilities generate-asymmetric-key,
sign-pkcs, and delegated capability sign-pkcs. If you want the generated key to be exportable, then add the
exportable-under-wrap delegated capability.

9.5.2 Authentication Key Example

Create a new Authentication Key capable of generating exportable asymmetric keys through KSP.

yubihsm> put authkey 0 0 "GenerateKey" 1 generate-asymmetric-key,
sign-pkcs sign-pkcs,exportable-under-wrap password
Stored Authentication key 0x0e32

58 Chapter 9. Using Key Storage Provider (KSP) - Windows Only

YubiHSM 2 User Guide

9.5.3 Create the Certificate Request Configuration File

To specify your request, the certreq utility requires an . inf file as input. An example file is supplied here.

Sample sign.inf

[Version]
Signature="$Windows NT$"

[NewRequest]

Subject = "CN=My Publisher" ; Entity name (dns name/upn for other cert types)
HashAlgorithm = sha256 ; Request uses sha256 hash

KeyAlgorithm = RSA ; Key pair generated using RSA algorithm
Exportable = FALSE ; Private key is not exportable
ExportableEncrypted = FALSE ; Private key is not exportable encrypted
KeyLength = 2048 ; YubiHSM KSP key sizes: 2048, 3072, 4096
KeySpec = 2 ; 1 = AT_KEYEXCHANGE, 2 = AT_SIGNATURE

KeyUsage = 0x80

; 80 = Digital Signature, 20 = Key Encipherment (bitmask)
MachineKeySet = FALSE

; True: cert belongs the local computer, False: current user
KeyUsageProperty = NCRYPT_ALLOW_SIGNING_FLAG

; Private key only used for signing, not decryption

UseExistingKeySet = FALSE ; Do not use an existing key pair

ProviderName = "YubiHSM Key Storage Provider"

ProviderType = 1

SMIME = FALSE ; No secure email function

UseExistingKeySet = FALSE ; Do not use an existing key pair

RequestType = PKCS10 ; Can be CMC, PKCS10, PKCS7 or Cert (self-signed)
[Strings]

szOID_ENHANCED_KEY_USAGE = "2.5.29.37"
szOID_CODE_SIGN = "1.3.6.1.5.5.7.3.3"
szOID_BASIC_CONSTRAINTS = "2.5.29.19"

[Extensions]
%sz0ID_ENHANCED_KEY_USAGE% = "{text}%sz0ID_CODE_SIGN%"
%szOID_BASIC_CONSTRAINTS% = "{text}ca=0&pathlength=0"

; If you are using ADCS with certificate templates, you may add
; a specific template under [RequestAttributes]

; [RequestAttributes]

; CertificateTemplate= CodeSigning

9.5. Example: Creating a Code-Signing Certificate using the Key Storage Provider 59

YubiHSM 2 User Guide

9.5.4 Create the Certificate Request

Once you have created the certificate request configuration file, pass it to certreq as the input file argument. For
example:

certreq -new sign.inf sign.req

9.5.5 Sign the Certificate Request

In the above example, the certificate request was written to sign.req.
1. Take this file and submit its contents to your CA for signature.

2. Open the resulting file (for example, sign.crt) and install the certificate to your personal store.

9.5.6 Sign using Signtool

1. Open a prompt with signtool in the path.

2. Sign your binary.

> signtool sign <binary name>

3. Identify your signing certificate by hash, if you have multiple certificates available for code signing.

signtool shows you a list of valid certificates. Re-run sign tool with the shal hash of the certificate:

> signtool sign /shal <certificate hash> <binary name>

4. Associate the YubiHSM private key to the certificate.

When importing the certificate for the first time on a new computer, you need to manually bind the certificate
to the private key. This is needed because 1) the key is not stored with the certificate and 2) Windows doesn’t
automatically create an association between the private key and the certificate.

After you import the certificate to your personal store, use the certutil utility provided by Windows.

> certutil -repairstore my <certificate hash>

9.5.7 Troubleshooting

The error messages returned from signtool are often unhelpful in diagnosing why a signing operation failed. In these
situations there are a few commands you can use to track down the root cause.

When using signtool, use the /v and /debug flags to get more detailed output.

* The example below shows a response you might receive if the certificate is installed but the YubiHSM is not
connected or is misconfigured.

> signtool sign /v /debug <binary name>

After EKU filter, 1 certs were left.
After expiry filter, 1 certs were left.
After Hash filter, 1 certs were left.
(continues on next page)

60 Chapter 9. Using Key Storage Provider (KSP) - Windows Only

YubiHSM 2 User Guide

(continued from previous page)

After Private Key filter, 0 certs were left.
SignTool Error: No certificates were found that met all the given criteria.

» Use certutil to check the validity of the imported certificate.

> certutil -verifystore my <certificate hash>

Certificate O
Serial Number: 029fe48291dd587cle6f42bca341291

Certificate is valid

* Use certutil to check whether the KSP has been installed correctly. You should see Provider Name:
YubiHSM Key Storage Provider as one of the entries with no errors.

> certutil -csplist

Provider Name: YubiHSM Key Storage Provider

* Use certutil to check if the key is accessible through the storage provider. You can also add the -v flag to get
additional details.

> certutil -csp "YubiHSM Key Storage Provider" -key

YubiHSM Key Storage Provider:
tg-75c94c4b-5e40-4e44-bcd2-ee3330d4942f
RSA

AT_SIGNATURE

* Use certutil to dump certificate information.

If the command shows Cannot find the certificate and private key for decryption. when us-
ing a new computer, it might indicate that certutil -repairstore hasn’t yet been performed.

> certutil -store my <certificate hash>

Certificate 0
Serial Number: 029fe48291dd587cle6f42bca341291

Private key is NOT exportable
Signature test passed

For a detailed explanation of all options available in the request .inf file, see the documentation for the certreq utility.
To generate a similar request using the Certificate Manager:

1. Open the Certificate Manager snap-in.

2. Select the Personal/Certificates store.

3. Right click and select All Tasks > Advanced Operations > Create Custom Request.

9.5. Example: Creating a Code-Signing Certificate using the Key Storage Provider 61

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1

YubiHSM 2 User Guide

62 Chapter 9. Using Key Storage Provider (KSP) - Windows Only

CHAPTER
TEN

PKCS#11 WITH YUBIHSM 2

10.1 Configuration

The PKCS#11 module requires a configuration file, default location for this file is current directory and default name is
yubihsm_pkcs1l.conf using the environment variable YUBIHSM_PKCS11_CONF one can point to a custom location
and name.

Configuration options can also be passed as a string in the pReserved field of C_Initialize, using the OpenSSL
PKCS#11 engine this can be set in the INIT_ARGS configuration value. This is technically a violation of the PKCS#11
specification (which mandates pReserved to be set to NULL) and is not supported by all applications.

Accepted configuration options:
» connector: URL pointing at the connector to contact, mandatory
e debug: Turn on PKCS#11 debugging, default off
¢ dinout: Turn on call tracing, default off
* ibdebug: Turn on debug of libyubihsm, default off
 debug-file: File to write debug information to, default stderr
* cacert: File with cacert to verify connector https cert with (not available on Windows)
* proxy: Proxy server for reaching the connector (not available on Windows)
¢ timeout: Timeout to use for initial connection to the connector (in seconds), default 5

A Configuration File Sample can be found below.

10.2 Logging In

All interesting operations through the PKCS#11 interface require a logged-in session, and one peculiarity of the
PKCS#11 interface is that the user PIN MUST be prefixed by the ID (16 bits, in hexadecimal, zero padded if required)
of the corresponding Authentication Key.

Assuming the default Authentication Key with ID 1 and password password, the user PIN would then be
0001password. To be compliant with PKCS#11 standards, the Authentication Key password MUST be at least 8
characters long.

This is not part of the PKCS#11 requirement, but instead provided through the C_GetTokenInfo function, which means
the module decides. Currently the total PIN length must be 12 to to 68 bytes (including the encoded auth key id, so 8
to 64 bytes for the actual PIN). This limit is flexible since the PIN is only used to derive keys.

63

https://developers.yubico.com/yubihsm-shell/yubihsm-pkcs11.html

YubiHSM 2 User Guide

Note: The concept of a Security Officer (SO) is not supported by the device, and the PIN management functions are
not implemented, neither for user nor for SO.

It is recommended that PIN (Authentication Key) management be performed via the yubihsm-shell utility or the
libyubihsm functions.

10.3 PKCS#11 on Windows

After installing yubihsm-shell using the windows installer, in addition to setting YUBTHSM_PKCS11_CONF environment
variable, the YubiHSM Shell\bin directory needs to be added to the system path in order for other applications to
be able to load it. This is because the yubihsm-pkcs11.dl1l is dynamically linked to the 1ibyubihsm*.d11 and
libcrypto-1_1.d11 libraries and they need to be accessible for the PKCS#11 module to be useful.

On Windows 10, setting the system path is done by following these steps:
1. Go to Control Panel > System and Security > System > Advanced system setting.
2. Click Environment Variables....
3. Under System Variables, highlight Path and click Edit....
4. Click New and add the absolute path to YubiHSM Shell/bin.
5

. Under System Variables, click New and add the environment variable YUBTHSM_PKCS11_CONF and set it to the
path to the YubiHSM2 PKCS11 configuration file.

If setting the system path is not desirable, the 1ibyubihsm*.d11 and libcrypto-1_1.d11 can be copied into the
same directory as the application that needs to access the PKCS#11 module.

10.4 Note for Developers

If LoadLibrary is called with an absolute path, it will not look for dependencies of the specified DLL in that directory,
but rather in the startup directory of the application that calls LoadLibrary. The solution is to either:

¢ Call LoadLibraryEx with the flag LOAD_WITH_ALTERED_SEARCH_PATH for absolute paths
* Add the directory where the PKCS#11 module is located to the system PATH

* Or copy the dependencies into the application directory.

Note: Calling LoadLibraryEx with that flag for a non-absolute path is undefined behavior according to MS docs. For
example, the way Pkcs11Interop does it is to set a variable to LOAD_WITH_ALTERED_SEARCH_PATH if the path looks
absolute, and 0 otherwise; and then always calling LoadLibraryEx. If the flags is ® then LoadLibraryEx behaves
exactly like LoadLibrary.

64 Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

10.5 PKCS#11 with JAVA

Due to design and implementation choices, there are some peculiarities when generating or importing keys into the
YubiHSM 2 using SunPKCS#11 provider and YubiHSM 2 PKCS#11 module. JAVA SunPKCS#11 provider requires
the ability to change a key’s properties after creation in order for it to be able to use the keys later on. However,
YubiHSM 2 does not allow such operation (All key properties have to be set at the time of creation and cannot be
changed after the fact). The key information here is that the asymmetric key and its corresponding X509Certificate
need to be accessed via the same ID on the device. Later versions of YubiHSM 2 PKCS#11 module provide a way to
achieve this via the use of Meta Objects, but it could be worth it to make sure that this requirement is met manually,
especially if the number of objects created on the YubiHSM 2 needs to be limited.

10.5.1 Version 2.4.0 or later

In version 2.4.0, the use of Meta Objects is introduced. Meta Objects are opaque objects with algorithm opaque-data
that store the values of CKA_ID and CKA_LABEL attributes of another object on the YubiHSM 2, thus working around
the hard limit on the length of those values and the inability to change those attributes after the fact. The label of a
Meta Object is always Meta object for followed by a HEX value representing the ID, type and sequence of the actual
object it is tied to (referred to as an Original Object).

Meta Objects are created as needed when the function to create an object is called with CKA_ID and/or CKA_LABEL
values that are longer than 2 and 40 bytes respectively, or when the function to change one of those values is called.
Meta Obijects store these values as unencrypted raw data. When an Original Object is deleted, its corresponding Meta
Object is also deleted automatically.

Meta Objects are only used within PKCS#11 context and their existence and use are invisible to PKCS#11 clients or
users. They are, however, visible to yubihsm-shell users.

10.5.2 Version 2.3.2 or earlier

When using SunPKCS11 provider, it’s important to know that generating asymmetric keys using C_GenerateKeyPair
does not work. In order for SunPKCS11 to be able to use asymmetric keys on the YubiHSM?2 device, both the
asymmetric key and its X509Certificate must be stored under the same ObjectID. Once an asymmetric key and its
X509Certificate are stored in the YubiHSM 2 under the same ObjectID, there is no problem whatsoever to use and
manage the key using PKCS#11, including deleting it.

To generate asymmetric keys on the YubiHSM 2 so that they are accessible by SunPKCS11 provider, either
yubihsm-setup or yubihsm-shell can be used.

yubihsm-setup

Use the subcommand ejbca to generate an asymmetric key on the YubiHSM2 and store it and its X509Certificate
under the same ObjectID

yubihsm-setup -d ejbca

10.5. PKCS#11 with JAVA 65

YubiHSM 2 User Guide

yubihsm-shell

Using yubihsm-shell, the attestation functionality can be leveraged to produce a self-signed X509Certificate that
can then be imported using the same ObjectID as the generated asymmetric key.

Generate asymmetric key and note its ObjectID
yubihsm-shell -a generate-asymmetric-key -i <KEY_OBJECT_ID> -1 <OBJECT_LABEL> -d <OBJECT_
—DOMAINS> -c <KEY_CAPABILITIES> -A <KEY_ALGORITHM>

Sign an attestation certificate for the generated key using the YubiHSM attestation.
—key (with ObjectID=0)

yubihsm-shell -a sign-attestation-certificate -i <KEY_OBJECT_ID> --attestation-id 0 --
—out cert.pem

Import the attestation certificate to use it as a template when signing the self-
—»signed certificate. Use the same ObjectID as the generated key

yubihsm-shell -a put-opaque -i <KEY_OBJECT_ID> -1 <OBJECT_LABEL> -A opaque-x509-
—certificate --informat=PEM --in cert.pem

Sign an attestation certificate for the generated key using the generated key itself
yubihsm-shell -a sign-attestation-certificate -i <KEY_OBJECT_ID> --attestation-id=<KEY_
—OBJECT_ID> --out selfsigned_cert.pem

Delete the template certificate to make room for the self-signed certificate to be.
- imported
yubihsm-shell -a delete-object -i <KEY_OBJECT_ID> -t opaque

Import the self-signed certificate using the same ObjectID as the generated key
yubihsm-shell -a put-opaque -i <KEY_OBJECT_ID> -1 <OBJECT_LABEL> -A opaque-x509-
—.certificate --informat=PEM --in selfsigned_cert.pem

Note that if a YubiHSM 2 device does not come with an attestation key with ObjectID 0, any other asymmetric key can
be used instead. Since the whole purpose of signing the first attestation certificate is to produce an X509Certificate to
use as a template, any X509Certificate with the desired attributes present can be used as a template instead.

Also note that when using a key for signing an attestation certificate, the signing key’s capabilities must include
sign-attestation-certificate.

10.6 Software Operations

C_Encrypt and C_Verify for Asymmetric Keys are performed in software, as well as all of the C_Digest operations.

10.7 PKCS#11 Attributes

There are a number of attributes defined in PKCS#11 that do not translate to Capabilities of the YubiHSM 2 device
and are therefore treated as always having a fixed value.

66 Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

PKCS#11 YubiHSM 2 Rationale
CKA_PRIVATE CK_TRUE Login is always required
CKA_DESTROYABLE CK_TRUE
Objects can always be deleted from
the device
CKA_MODIFIABLE CK_FALSE
Objects are immutable on the
device
CKA_COPYABLE CK_FALSE
Objects are immutable on the
device
CKA_SENSITIVE CK_TRUE
All objects are sensitive
CKA_ALWAYS_SENSITIVE CK_TRUE

Objects are immutable on the
device

10.8 Capabilities and Domains

Objects created via the PKCS#11 module inherit the Domains of the Authentication Key used to establish the session.
The Domains cannot be changed or modified via the module.

Object Capabilities are set on creation, depending on their Type, e.g. an RSA signing key (CKK_RSA) created via
C_CreateObject with the attribute CKA_SIGN sets the following Capabilities set sign-pkcs,sign-pss.

Similarly for EC (CKK_EC), the key has sign-ecdsa set.

See the following tables for mappings:

10.8. Capabilities and Domains 67

YubiHSM 2 User Guide

PKCS#11
RSA EC Wrap (CKK HMAC
(CKK_RSA) (CKK_ECQ) _YUBICO_AES* (CKK_SHA*
_CCM _WRAP) _HMAC)
N/A N/A wrap-data N/A
CKA
_ENCRYPT
CKA_EXT export- export- export- export-
RACTABLE under-wrap under-wrap under-wrap under-wrap
N/A unwrap-data N/A
CKA decrypt-pkcs,
_DECRYPT decrypt-oaep
N/A derive-ecdh N/A N/A
CKA
_DERIVE
sign-ecdsa N/A sign-hmac
CKA sign-pkcs,
_SIGN sign-pss
N/A N/A N/A verify-hmac
CKA
_VERIFY
N/A N/A N/A
CKA export-
_WRAP wrapped
N/A N/A N/A
CKA import-
_UNWRAP wrapped
68 Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

10.9 PKCS#11 Objects

Not all PKCS#11 Object types are implemented, this is a list of what is implemented and what it maps to.

PKCS#11

Supported CKK

Comment

CKO_CERTIFICATE

CKO_DATA

CKO_PRIVATE_KEY

CKO_PUBLIC_KEY

CKO_SECRET_KEY

CKK_RSA, CKK_EC

CKK_SHA_1_HMAC,
CKK_SHA256_HMAC,
CKK_SHA384 HMAC,
CKK_SHAS512_HMAC,
CKK_YUBICO_AES128
_CCM_WRAP,
CKK_YUBICO_AES192
_CCM_WRAP,
CKK_YUBICO_AES256
_CCM_WRAP

Opaque object with algorithm
YH_ALGO_OPAQUE_X509
_CERTIFICATE

Opaque object with algorithm
YH_ALGO_OPAQUE_DATA

RSA 2048, 3072 & 4096 with
e=0x10001, EC with secp224rl,
secp256rl, secp384rl, secpS21rl,
secp256k1, brainpool256r1,
brainpool384r1, brainpool512rl

does not exist in device, only
as a property of a private key

10.9. PKCS#11 Objects

69

YubiHSM 2 User Guide

10.10 PKCS#11 Functions

Not all functions in PKCS#11 are implemented in the module, this is a list of what is implemented.

PKCS#11

Comment

C_CloseSession
C_CloseAllSessions
C_CreateObject

C_Decrypt
C_DecryptFinal
C_Decryptlnit
C_DecryptUpdate
C_DeriveKey
C_DestroyObject
C_Digest
C_DigestFinal
C_Digestlnit

C_DigestUpdate
C_Encrypt
C_EncryptFinal
C_EncryptInit

C_EncryptUpdate
C_Finalize
C_FindObjects
C_FindObjectsFinal
C_FindObjectsInit
C_GenerateKey
C_GenerateKeyPair
C_GenerateRandom
C_GetAttributeValue
C_GetFunctionList
C_Getlnfo
C_GetMechanismList
C_GetMechanismInfo
C_GetObjectSize
C_GetSessionInfo
C_GetSlotInfo
C_GetSlotList
C_GetTokenlInfo
C_Initialize

Use with CKO_PRIVATE_KEY,
CKO_SECRET_KEY,

CKO_CERTIFICATE or CKO_DATA

Decrypt with Wrap Key or RSA key

Derive key using ECDH as a PKCS#11 session object

Do software digest with CKM_SHA_1,
CKM_SHA256,

CKM_SHA384 or CKM_SHA512

Encrypt with Wrap Key or do software encryption
for RSA key

Generate HMAC Key or Wrap Key
Generate Asymmetric Key
Generate up to 2021 bytes of random

continues on next page

70

Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

Table 1 - continued from previous page

PKCS#11

Comment

C_Login
C_Logout
C_OpenSession
C_Sign
C_SignFinal
C_Signlnit
C_SignUpdate
C_Verify
C_VerifyFinal
C_Verifylnit
C_VerifyUpdate
C_WrapKey

Sign with HMAC Key or Asymmetric Key

Verifty HMAC or software verify asymmetric
C_UnwrapKey Unwrap an object with Wrap Key

Wrap an object with Wrap Key

10.11 PKCS#11 Vendor Definitions

Working with the device Wrap Keys requires using vendor-specific definitions, these are listed in the table below. The

Wrap Keys can be used with C_WrapKey, C_Unwrapkey, C_Encrypt, and C_Decrypt.

Wrap Type

Wrap Key

CKM_YUBICO_AES_CCM_WRAP

CKK_YUBICO_AES128_CCM_WRAP
CKK_YUBICO_AES192_ CCM_WRAP
CKK_YUBICO_AES256_CCM_WRAP

0xd9554204
0xd955421d
0xd9554229
0xd955422a

10.12 Configuration File Sample

Below is a sample of a yubihsm_pkcs11.conf configuration file.

This is a sample configuration file for the YubiHSM PKCS#11 module

Uncomment the various options as needed

URL of the connector to use. This can be a comma-separated list
connector = http://127.0.0.1:12345

#
#

Enables general debug output in the module

H

debug

H*

H

dinout

H

H

libdebug

Enables libyubihsm debug output in the module

Enables function tracing (ingress/egress) debug output in the module

(continues on next page)

10.11. PKCS#11 Vendor Definitions

71

YubiHSM 2 User Guide

if it does not exist. The content is appended

H R R R

debug-file = /tmp/yubihsm_pkcs11_debug

a peer. Currently not supported on Windows

H R R W W

cacert = /tmp/cacert.pem

Proxy server to use for the connector

#
Currently not supported on Windows
#
#

proxy = http://proxyserver.local.com:8080

Redirects the debug output to a specific file. The file is created

CA certificate to use for HTTPS validation. Point this variable to
a file containing one or more certificates to use when verifying

(continued from previous page)

Timeout in seconds to use for the initial connection to the connector

timeout = 5

10.13 INIT_ARGS Sample

Below is a sample of using the INIT_ARGS configuration with an openssl.cnf file.

openssl_conf = openssl_init

[openssl_init]
engines = engine_section

[engine_section]
pkcsll = pkcsll_section

[pkcsll_section]

engine_id = pkcsll

dynamic_path = /path/to/engine_pkcsll.so
MODULE_PATH = /path/to/yubihsm_pkcsll.so

INIT_ARGS = connector=http://127.0.0.1:12345 debug
init = 0

Note: OpenSSL 1.1 will auto-load modules present in the system engine directory (like /usr/lib/
x86_64-1linux-gnu/engines-1.1)sothe dynamic_path line has to be dropped there. The error shown will mention

“conflicting engine id”.

72 Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

10.14 PKCS#11 Tool Compatibility, Interoperability and Known Re-
strictions

This topic contains information about the different tools that are either known to work or known not to work with the
current version of the YubiHSM 2.

10.14.1 pkcsi1i-tool

This is the tool produced by OpenSC.
Run with HEAD on master (currently dfd18389346296£8e4617832e0d5f4171835620d).

pkcsll-tool --module yubihsm_pkcsll.so -1 -p 0001password -t

All relevant tests are passing with the following notable exceptions:

* RSA-PKCS-OAEP decryption: the test appears to be broken. It calls into OpenSSL’s EVP_PKEY_encrypt/
EVP_PKEY_encrypt_old which uses PKCS1v1.5 padding

* mechtype-0xD9554204 decryption: this a Yubico custom mechanism (AES-CCM wrapping) and can’t be
handled by the tool

10.14.2 pkcsiitest

This is a PKCS#11 tester tool by Google. It is built as a test target in the source code. We maintain an internal version
to accommodate some differences at https://github.com/Yubico/pkcs]1 I test.

The command used

pkcslltest -myubihsm_pkcsll.so -1. -u®@001password --gtest_filter= -${SKIPPED_TESTS_STR

where SKIPPED_TESTS_STR is the list below.

All relevant tests pass. The following tests have been explicitly skipped:

Slot.NoInit
PKCS11Test.EnumerateMechanisms
ReadOnlySessionTest.GenerateRandom

ReadOnlySessionTest
ReadOnlySessionTest

ReadOnlySessionTest.
.CreateKeyPairObjects
.CreateSecretKeyAttributes
ReadOnlySessionTest.
ReadOnlySessionTest.
.GenerateKeyInvalid
.GenerateKeyPairInvalid
.WrapUnwrap
.WrapInvalid
.UnwrapInvalid

ReadOnlySessionTest
ReadOnlySessionTest

ReadOnlySessionTest
ReadOnlySessionTest
ReadOnlySessionTest
ReadOnlySessionTest
ReadOnlySessionTest

.GenerateRandomNone
.UserLoginlirongPIN

SOLoginFail

SecretKeyTestVectors
SignVerifyRecover

ReadWriteSessionTest.CreateCopyDestroyObject
ReadWriteSessionTest.SetLatchingAttribute
ReadWriteSessionTest.FindObjectSubset

(continues on next page)

10.14. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions 73

https://github.com/Yubico/pkcs11test

YubiHSM 2 User Guide

ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest.
ReadWriteSessionTest
ReadWriteSessionTest.
ReadWriteSessionTest.
RilUserSessionTest.SOL
DataObjectTest.CopyDe
DataObjectTest.GetMul
DataObjectTest.GetSet
RWSOSessionTest.SO0Ses
RWSOSessionTest.UserL
RWEitherSessionTest.T
KeyPairTest.EncryptDe
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

ReadOnlySessionSOLoginFail
SOLogin

TookanAttackAl
TookanAttackA3
TookanAttackA4
TookanAttackAS5a
TookanAttackASb

.PublicExponent4Bytes

ExtractKeys
AsymmetricTokenKeyPair
oginFail

stroyObjectInvalid
tipleAttributes
AttributeInvalid

sionFail

oginFail

ookanAttackA2

crypt

.EncryptDecrypt/0
.EncryptDecrypt/1
.EncryptDecrypt/2
.EncryptDecrypt/3
.EncryptDecrypt/4
.EncryptDecrypt/5
.EncryptFailDecrypt/0
.EncryptFailDecrypt/1
.EncryptFailDecrypt/2
.EncryptFailDecrypt/3
.EncryptFailDecrypt/4
.EncryptFailDecrypt/5
.EncryptDecryptGetSpace/0
.EncryptDecryptGetSpace/1
.EncryptDecryptGetSpace/2
.EncryptDecryptGetSpace/3
.EncryptDecryptGetSpace/4
.EncryptDecryptGetSpace/5
.EncryptDecryptParts/0
.EncryptDecryptParts/1
.EncryptDecryptParts/2
.EncryptDecryptParts/3
.EncryptDecryptParts/4
.EncryptDecryptParts/5
.EncryptDecryptInitInvalid/®
.EncryptDecryptInitInvalid/1
.EncryptDecryptInitInvalid/2
.EncryptDecryptInitInvalid/3
.EncryptDecryptInitInvalid/4
.EncryptDecryptInitInvalid/5
.EncryptErrors/0
.EncryptErrors/1
.EncryptErrors/2
.EncryptErrors/3

(continued from previous page)

(continues on next page)

74

Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

.EncryptErrors/4
.EncryptErrors/5
.DecryptErrors/0
.DecryptErrors/1
.DecryptErrors/2
.DecryptErrors/3
.DecryptErrors/4
.DecryptErrors/5
.EncryptUpdateErrors/0
.EncryptUpdateErrors/1
.EncryptUpdateErrors/2
.EncryptUpdateErrors/3
.EncryptUpdateErrors/4
.EncryptUpdateErrors/5
.EncryptModePolicingl/0
.EncryptModePolicingl/1
.EncryptModePolicingl/2
.EncryptModePolicingl/3
.EncryptModePolicingl/4
.EncryptModePolicingl/5
.EncryptModePolicing2/0
.EncryptModePolicing2/1
.EncryptModePolicing2/2
.EncryptModePolicing2/3
.EncryptModePolicing2/4
.EncryptModePolicing2/5
.EncryptInvalidIV/0
.EncryptInvalidIV/1
.EncryptInvalidIV/2
.EncryptInvalidIV/3
.EncryptInvalidIV/4
.EncryptInvalidIV/5
.DecryptInvalidIV/0®
.DecryptInvalidIV/1
.DecryptInvalidIV/2
.DecryptInvalidIV/3
.DecryptInvalidIV/4
.DecryptInvalidIV/3
.DecryptInvalidIV/4
.DecryptInvalidIV/5
.DecryptUpdateErrors/0
.DecryptUpdateErrors/1
.DecryptUpdateErrors/2
.DecryptUpdateErrors/3
.DecryptUpdateErrors/4
.DecryptUpdateErrors/5
.EncryptFinalImmediate/®
.EncryptFinalImmediate/1
.EncryptFinalImmediate/2
.EncryptFinalImmediate/3
.EncryptFinalImmediate/4
.EncryptFinalImmediate/5

(continued from previous page)

(continues on next page)

10.14. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions 75

YubiHSM 2 User Guide

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.EncryptFinalErrorsl/5
.EncryptFinalErrors2/0

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.EncryptFinalErrors2/2

Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.EncryptFinalErrors2/4
.EncryptFinalErrors2/5

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.DecryptFinalErrorsl/1
Ciphers/SecretKeyTest.
.DecryptFinalErrorsl/3
.DecryptFinalErrorsl/4

Ciphers/SecretKeyTest

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.DecryptFinalErrors2/0

Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.DecryptFinalErrors2/2
.DecryptFinalErrors2/3

Ciphers/SecretKeyTest
Ciphers/SecretKeyTest

Ciphers/SecretKeyTest.
.DecryptFinalErrors2/5

Ciphers/SecretKeyTest

.EncryptFinalErrors1/0
.EncryptFinalErrorsl/1
.EncryptFinalErrorsl/2
.EncryptFinalErrorsl/3

EncryptFinalErrorsl/4

EncryptFinalErrors2/1

EncryptFinalErrors2/3

DecryptFinalErrorsl1l/0

DecryptFinalErrorsl/2

DecryptFinalErrorsl/5

DecryptFinalErrors2/1

DecryptFinalErrors2/4

Digests/DigestTest
Digests/DigestTest
Digests/DigestTest
Digests/DigestTest
Digests/DigestTest
Digests/DigestTest
Digests/DigestTest
Digests/DigestTest

Digests/DigestTest.
.DigestKeyInvalid/4

Digests/DigestTest

.DigestKey/0
.DigestKey/1
.DigestKey/2
.DigestKey/3
.DigestKey/4
.DigestKeyInvalid/0
.DigestKeyInvalid/1
.DigestKeyInvalid/2

DigestKeyInvalid/3

Signatures/SignTest.SignVerify/0

Signatures/SignTest.SignFailVerifylirong/0
Signatures/SignTest.SignFailVerifyShort/®

Duals/DualSecretKeyTest.DigestEncrypt/0
Duals/DualSecretKeyTest.DigestEncrypt/1
Duals/DualSecretKeyTest.DigestEncrypt/2
Duals/DualSecretKeyTest.DigestEncrypt/3
Duals/DualSecretKeyTest.DigestEncrypt/4
Duals/DualSecretKeyTest.DigestEncrypt/5

(continued from previous page)

76

Chapter 10. PKCS#11 with YubiHSM 2

YubiHSM 2 User Guide

10.14.3 python-pkcs11tester

This is a Yubico tool, developed to run additional tests.

python setup.py test

10.14.4 pittool

This is a tool shipped with GnuTLS. From version 3.5.2 it can work with the YubiHSM 2. Keys can be generated.

plltool --provider=yubihsm_pkcsll.so "pkcsll:pin-value=0001password" --login --generate-
—rsa --label="rsa test key" --bits=2048

Signatures tested and verified.

plltool --provider=yubihsm_pkcsll.so "pkcsll:pin-value=0001password;object=rsakey" --
—login --test-sign

10.14.5 OpenDNSSEC

OpenDNSSEC contains a 1ibhsm and two tools, ods-hsmutil and ods-hsmspeed, both of these work with the
YubiHSM 2 with a small configuration file.

<?xml version="1.0" encoding="UTF-8"?7>

<Configuration>
<RepositoryList>
<Repository name="default">
<Module>yubihsm_pkcs1l.so</Module>
<TokenLabel>YubiHSM</TokenLabel>
<PIN>0001password</PIN>
</Repository>
</RepositoryList>
</Configuration>

Using this, it is possible to run through tests.

ods-hsmutil -c conf-yubihsm.xml test default

This passes all tests using algorithms supported by the YubiHSM 2 (rsa2048, rsa4096, ecp256, ecp384 & randomness).

10.14. PKCS#11 Tool Compatibility, Interoperability and Known Restrictions 77

YubiHSM 2 User Guide

78 Chapter 10. PKCS#11 with YubiHSM 2

CHAPTER
ELEVEN

RESETTING DEVICE TO FACTORY SETTINGS

Before deploying the YubiHSM 2 in a production environment, it might be necessary to reset the device to its factory
settings, for instance to facilitate tests or training.

A reset destroys any objects stored on the device that are not factory-installed.

11.1 Physical Reset

The device can be physically reset to its factory settings. To do this, while inserting the YubiHSM 2 into a USB port,
press the metal rim as you insert it and continue to press the rim for a minimum of 10 seconds.

11.2 Reset Using YubiHSM Shell

Please refer to the RESET DEVICE Command.

79

YubiHSM 2 User Guide

80 Chapter 11. Resetting Device to Factory Settings

CHAPTER
TWELVE

EJBCA INSTALLATION AND CONFIGURATION GUIDE

EJBCA and YubiHSM 2 work well together once suitable asymmetric keys have been generated on the YubiHSM 2.
Even though the EJBCA Adminweb does provide functionality to generate keys on an HSM, this functionality cannot
be used with YubiHSM 2. Instead, keys need to be generated using the YubiHSM 2 Setup Tool. Once the keys are
generated, they can be used, tested and removed using the functionality provided by EJBCA.

When generating new keys on the YubiHSM 2 for use by an existing installation of EJBCA, the relevant crypto token
must be reactivated before the new keys are accessible by EJBCA.

Note: A key alias on EJBCA is equivalent to a key label on the YubiHSM 2.

12.1 Prerequisites

Download the installation package suitable for the operation system from the Yubico Developers website. The following
packages should be installed:

* YubiHSM 2 Connector

* YubiHSM Shell

* YubiHSM 2 Setup Tool

e PKCS#11 with YubiHSM 2

12.2 Configuring a New EJBCA Installation

While following the installation instructions provided by EJBCA, the instructions bellow need to be executed before
deploying EJBCA for the first time:

1. Decide how many keys to generate and what aliases they should have. See the documentation in EJBCA_HOME/
conf/catoken.properties.sample for recommendation on what keys should be generated.

2. Use the YubiHSM 2 Setup Tool to generate the keys on the YubiHSM 2, one at a time.

3. Set the environment variable YUBTHSM_PKCS11_CONF to the path of the yubihsm_pkcsll.conf file. See
PKCS#11 with YubiHSM 2 for the content of that file.

4. When configuring EJBCA, make sure to configure the following properties files:
e EJBCA_HOME/conf/catoken.properties

81

https://developers.yubico.com/YubiHSM2/Releases/index.html

YubiHSM 2 User Guide

sharedLibrary=/path/to/yubihsm_pkcsll.so
slotLabelType=SLOT_NUMBER

slotLabelValue=0

#Keys and their aliases as were created in step 2

e EJBCA_HOME/conf/install.properties

ca.tokentype=org.cesecore.keys.token.PKCS11CryptoToken
#ca. tokenpassword=null
ca.tokenproperties=<EJBCA_HOME>/conf/catoken.properties

e EJBCA_HOME/conf/web.properties

cryptotoken.pll.1lib.255.name=<label to identify the YubiHSM 2>
cryptotoken.pll.1ib.255.file=/path/to/yubihsm_pkcsll.so

Note: The number 255 is just an example. It can be any “available” number. See documentation in EJBCA_HOME/
conf/web.properties.

12.3 Configuring an Existing EJBCA Installation

1. Set the environment variable YUBIHSM_PKCS11_CONF to the path of the yubihsm_pkcs1l.conf file. See
PKCS#11 with YubiHSM 2 for the content of that file.

2. Configure EJBCA_HOME/conf/web.properties as follows (255 is just an example, read the documentation in
the file for more details):

cryptotoken.pll.1lib.255.name=<label to identify the YubiHSM 2>
cryptotoken.pll.1ib.255.file=/path/to/yubihsm_pkcsll.so

3. Re-deploy EJBCA and restart the application server.

4. On EJBCA Adminweb, create a new CryptoToken:

a.
b.

C.

Go to CA Functions > Crypto Tokens.
Click on Create new....

Configure the new CryptoToken as follows:
Name: <name for this crypto token>
Type: PKCS#11

Authentication Code: <password to open a session on the YubiHSM 2. See PKCS#1 1 with YubiHSM
2 > Logging In.

PKCS#11 Library: <from the drop down menu, choose the label you set in step 2.>
PKCS#11 Reference Type: Slot ID

PKCS#11 Reference: 0

PKCS#11 Attribute File: Default

. Click Save. If there already are keys on the YubiHSM 2, a list of them is displayed now (only keys

created with the YubiHSM 2 Setup tool are displayed).

82

Chapter 12. EJBCA Installation and Configuration Guide

YubiHSM 2 User Guide

5. On the command line, use the YubiHSM 2 Setup tool to generate keys on the YubiHSM 2, one at a time.

6. On EJBCA Adminweb, deactivate and then re-activate the Crypto Token created in step 4. The new keys on the
YubiHSM 2 are now ready to be used.

Important: The slot number of the shared PKCS#11 library must be 0.

12.3. Configuring an Existing EJBCA Installation 83

YubiHSM 2 User Guide

84 Chapter 12. EJBCA Installation and Configuration Guide

CHAPTER
THIRTEEN

USING OPENSSH CERTIFICATES FOR HOST LOGIN

OpenSSH supports a proprietary version of certificates that allow simple login to hosts.

13.1 Traditional Method

The usual way to enable a user U to access a specific host H using SSH is to copy the public key of U in a file on H
(typically called authorized_keys).

This method suffers from a lack of generality. If another user U' were to be given access to H, their public key should
also be copied in that same file. At the same time, if U were to be given access to a different host H', their public key
would have to be added to an equivalent file on that host.

While various automatic provisioning systems have been devised, those still represent a workaround rather than a
solution to the problem.

13.2 OpenSSH CA

Since version 5.4 (released 2010-03-08) OpenSSH has had support for so-called OpenSSH Certificates.

By using these, only one OpenSSH CA public key has to be copied onto the target host. At that point any user can be
granted access to any such host by giving them a file that contains the following information: their own public key, a
validity period, a list of usernames that the user is allowed to login as, and a digital signature over the whole content
created using the private key of the SSH CA.

This file, the SSH Certificate, is then automatically presented to the SSH server by the SSH client of the user as part of
the login process.

13.3 OpenSSH Certificates with YubiHSM 2

The private key of an SSH CA is a regular private key and can be stored on a YubiHSM 2. OpenSSH has built-in support
for signing SSH Certificates using CA private keys that reside on a hardware token through the PKCS#11 interface.

The YubiHSM 2 also has specific support for signing SSH Certificates using an RSA CA key. This guide will also
describe how to leverage that.

85

YubiHSM 2 User Guide

13.3.1 Example: OpenSSH built-in support for Signing SSH certificates

Signing SSH certificates is performed with OpenSSH’s ssh-keygen command using the -s ca_key option. The
ca_key specifies the key file containing the signing key. The signing key can be stored in an HSM, in which case the
key file only contains the public part of the signing key. The public key is used to locate the corresponding private key
on the HSM through the PKCS#11 interface. The PKCS#11 module to use is specified with the -D option.

1.

Create an SSH CA key on the HSM, export the CA public key, and convert the public key into PKCS8 format
for use with OpenSSH.

$ yubihsm-shell -a generate-asymmetric-key --authkey=0x0001 -p password -i 0x000a -
—1 "SSH_CA_Key" -c "sign-pkcs" -A rsa2048

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds
Created session 1

Generated Asymmetric key 0x000a

$ yubihsm-shell -p password --authkey=0x0001 -a get-public-key -i 0x000a --out ca_
—pub.pem

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds

Created session 1

$ ssh-keygen -i -f ca_pub.pem -m PKCS8 > ca.pub

Note: The CA key needs capability sign-pkcs in order to sign SSH pubkeys.

Sign the user’s pubkey in the file id_rsa.pub, using the signing key stored in the HSM.

$ ssh-keygen -s ca.pub -D /usr/local/lib/pkcsll/yubihsm_pkcsll.dylib -I key_id id_
—rsa.pub

Enter PIN for 'YubiHSM':
Signed user key id_rsa-cert.pub: id "key_id" serial ® valid forever

Note: The PIN needs to be prefixed with the ID of the authentication-key in order for ssh-keygen to authen-
ticate.

The signed SSH certificate is generated in the file id_rsa-cert.pub.

86

Chapter 13. Using OpenSSH Certificates for Host Login

YubiHSM 2 User Guide

13.3.2 Signing SSH Certificate Requests

Instead of directly signing a user’s SSH pubkey directly, the YubiHSM 2 can also be used to sign SSH pubkeys only
when a number of conditions are met. This scenario is discussed in the rest of this document.

13.3.3 High-level Description and components
A YubiHSM 2 device is able to sign OpenSSH public keys when those are submitted to the device as part of a specific
format that we call OpenSSH Certificate Request.

Such a request is granted (i.e. the signature is computed and released), if and only if the following two requirements
are fulfilled:

» The user who sends the request to the device has the right privileges to access the OpenSSH CA private key on
the device.

This is fulfilled by making sure that the user submitting the request (who may not be the same one who generates
the request) can establish a Session with the device through an Authentication Key that has access to the necessary
Domains and has the necessary Capability set.

* The OpenSSH Certificate Request meets a series of pre-defined constraints.

This is fulfilled by encoding those pre-defined constraints in an object with Type Template and Algorithm SSH
Template.

13.3.4 SSH Template

An SSH Template is a binary object that can be used to restrict how and when an SSH CA private key should be used
to sign SSH Certificate Requests.

This is a binary object that encodes a series of constraints. Its format is a collection of Tag-Length-Value tuples whose
meaning is described below:

Tag Value Tag Description

0x01 Timestamp key algorithm
0x02 Timestamp public key
0x03 CA key white-list

0x04 Not before

0x05 Not after

0x06 Principals black-list

The individual tags are further explained below.

Timestamp Key Algorithm — The ALGORITHMS of the public key used to verify timestamp signatures.
Timestamp Public Key — The public key used to verify timestamp signatures.

CA Key White-list — The list of Object IDs describing which Asymmetric Keys can be used with this template.

Not Before — The Not Before time offset to be applied to the current time. If a request contains a time value that is
before this computed timestamp, an error will be returned.

Not After — The Not After time offset to be applied to the current time. If a request contains a time value that is after
this computed timestamp, an error will be returned.

Principals Black-list — The nul-separated, nul-terminated list of Principals (user names) for which a certificate will
not be issued.

13.3. OpenSSH Certificates with YubiHSM 2 87

https://github.com/joostd/developers.yubico.com/blob/patch-SADEV-164/content/YubiHSM2/Concepts/Object_ID.adoc

YubiHSM 2 User Guide

Example template — A hex-dump of an example template file is shown below:

01 0001 09

02 0100 cb2702...d71081f1d1
03 0002 000a

04 0004 000012cO®

05 0004 00008cal®

06 0005 726£f6£7400

This template file contains, in order:
* Timestamp Key Algorithm 9 (RSA 2048)
» Timestamp public key (256 bytes)
* CA Key whitelist containing the single Key ID 0x000a
¢ A Not before offset of 300 seconds (5 minutes)
¢ A Not before offset of 36000 seconds (10 hours)
* A principal blacklist containing the principal root
Although not officially supported, templates can be generated using yubihsm-ssh-tool.

For instance, the above template file and the embedded timestamp key are generated using:

$ openssl genrsa -out timestamp.pem
Generating RSA private key, 2048 bit long modulus
e is 65537 (0x10001)

$ openssl rsa -pubout -in timestamp.pem -out timestamp_pub.pem
writing RSA key

$ pipenv run yubihsm-ssh-tool templ -T timestamp_pub.pem -k 10 -b 300 -a 36000 -p root

Here, the file timestamp_pub.pem contains the timestamp certificate public key, the CA key ID is 10, certificates
should only be issued if their validity is at most 5 minutes in the past (to accommodate for clock skew) and at most 10
hours in the future. Also, certificates for user root are not allowed.

13.4 SSH Certificate Request

An SSH certificate format is defined by OpenSSH but it is not too dissimilar from an X.509 certificate. At its core it is
a collection of attributes, a time period, a public key and a signature over all the data.

An SSH Certificate Request is the set of information that must be sent to a YubiHSM 2 so that it can generate the
aforementioned signature. This consists of all the data present in the certificate (excluding the signature).

For a description, see the ssh-rsa-cert-v0@1l@openssh.com key format in the OpenSSH specs.

88 Chapter 13. Using OpenSSH Certificates for Host Login

https://github.com/YubicoLabs/yubihsm-ssh-tool
https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.certkeys

YubiHSM 2 User Guide

13.5 Signing an SSH Certificate Request

After an SSH Template has been stored on the YubiHSM 2 and an SSH Certificate Request has been created, it can be
sent to the device for signing.

This is done by issuing the Sign SSH Certificate Command. The parameters required are:
* Object ID of the SSH CA key which has already been stored on the device
* Object ID of the SSH Template to use in order to validate the request
¢ Algorithm to use to produce the certificate signature
* timestamp with the definition of Now
* signature ST over the SSH Certificate Request and the timestamp
* SSH Certificate Request

After the command is issued, the following steps take place in the YubiHSM 2. First the signature ST is verified using
the public key present within the specified SSH Template. If the verification is successful, the value of Now is recorded.
Next the SSH Certificate Request is parsed to extract the Not Before and Not After timestamps together with the
list of Principals. The following checks are then performed:

 ID of the SSH CA key must appear in the SSH CA key white-list present in the SSH Template.

* Not Before timestamp in the SSH Certificate Request must be greater than or equal to Now plus the Not Before
offset specified in the SSH Template.

* Not After timestamp in the SSH Certificate Request must be less than or equal to Now plus the Not After
offset specified in the SSH Template.

 That none of the Principals specified in the SSH Certificate Request must appear in the Principals black-list SSH
Template.

If all the constraints were fulfilled, the YubiHSM 2 produces a signature using the Algorithm specified in the command.
This signature can be appended to the SSH Certificate Request to produce a valid SSH Certificate.

13.5.1 Example request

Although not officially supported, requests can be generated using yubihsm-ssh-tool:

$ pipenv run yubihsm-ssh-tool req -s ca_pub.pem -t timestamp.pem -I user-identity -n.
—~username -V -5h:+5h id_rsa.pub

13.5.2 Example: Sighing SSH certificates using templates and signing requests

Below is an example of signing SSH certificates using templates and certificate requests.

1. Create an SSH CA key on the HSM, and export the CA public key.

$ yubihsm-shell -a generate-asymmetric-key --authkey=0x0001 -p password -i 10 -1
—"SSH_CA_Key" -c "sign-ssh-certificate" -A rsa2048

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds
Created session 1

Generated Asymmetric key 0x000a

(continues on next page)

13.5. Signing an SSH Certificate Request 89

https://github.com/joostd/developers.yubico.com/blob/patch-SADEV-164/content/YubiHSM2/Commands/Sign_Ssh_Certificate.adoc
https://github.com/joostd/developers.yubico.com/blob/patch-SADEV-164/content/YubiHSM2/Concepts/Object_ID.adoc
https://github.com/joostd/developers.yubico.com/blob/patch-SADEV-164/content/YubiHSM2/Concepts/Object_ID.adoc
https://github.com/joostd/developers.yubico.com/blob/patch-SADEV-164/content/YubiHSM2/Concepts/Algorithms.adoc
https://github.com/YubicoLabs/yubihsm-ssh-tool

YubiHSM 2 User Guide

(continued from previous page)

$ yubihsm-shell -p password --authkey=0x0001 -a get-public-key -i 10 --out ca_pub.
—pem

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds
Created session 1

Note: This time, the CA key needs capability sign-ssh-certificate in order to sign SSH certificate signing
requests.

2. Create the template file and store the template in the HSM as an object of type template-ssh with object ID
20 and label SSH_Template.

$ pipenv run yubihsm-ssh-tool templ -T timestamp_pub.pem -k 10 -b 36000 -a 36000 -p.
—root

$ yubihsm-shell -a put-template -p password -i 20 -1 "SSH_Template" -A template-ssh..
—--in templ.dat

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds
Created session 1

Stored Template object 0x0014

3. Generate a certificate signing request for user username.

$ pipenv run yubihsm-ssh-tool req -s ca_pub.pem -t timestamp.pem -I user-identity -
—n username -V -5h:+5h id_rsa.pub

Hash is: b'95dd317189b5e392481de896e7£f111228b76d6efe3daa344c2da2819927a05ch’

4. Sign the certificate request using the CA key on the HSM.

$ yubihsm-shell -a sign-ssh-certificate -p password -i 10 --template-id 20 -A rsa-
—pkcsl-sha256 --in req.dat --out id_rsa-cert.pub

Using default connector URL: http://127.0.0.1:12345
Session keepalive set up to run every 15 seconds
Created session 1

The signed SSH certificate is generated in the file id_rsa-cert.pub.

90 Chapter 13. Using OpenSSH Certificates for Host Login

YubiHSM 2 User Guide

13.5.3 Example: constraint violation

To illustrate what happens when the constraints specified in the certificate template are violated, for instance when a
certificate is requested for the root user.

$ pipenv run yubihsm-ssh-tool req -s ca_pub.pem -t timestamp.pem -I user-identity -n.
—root -V -5h:+5h id_rsa.pub

Hash is: b'b75d30392a5ea5887affceb593154d2cc860f76f7bbc82757ec3fa20cd2a4d63’

$ yubihsm-shell -a sign-ssh-certificate -p password -i 10 --template-id 20 -A rsa-pkcsl-
—»sha256 --in req.dat --out id_rsa-cert.pub

Using default connector URL: http://127.0.0.1:12345

Session keepalive set up to run every 15 seconds

Created session 1

Failed to get certificate signature: SSH CA constraint violation
Unable to get ssh certificate

13.5. Signing an SSH Certificate Request 91

YubiHSM 2 User Guide

92 Chapter 13. Using OpenSSH Certificates for Host Login

CHAPTER
FOURTEEN

OPENSSL WITH LIBP11 FOR SIGNING, VERIFYING AND
ENCRYPTING, DECRYPTING

OpenSSL can be used with pkcs11 engine provided by the 1ibp11 library, and complemented by p11-kit that helps
multiplexing between various tokens and PKCS#11 modules (for example, the system that the following was tested on
supports: YubiHSM 2, YubiKey NEO, YubiKey 4, Generic PIV tokens and SoftHSM 2 software-emulated tokens).

14.1 Signing and Verifying

Three examples for using openSSL for signing in and verifying access.

14.1.1 RSA-PKCS#1 v1.5

$ openssl dgst -engine pkcsll -keyform engine -sign "pkcsll:token=YubiHSM;id=%04%01;
—type=private" -out t3200.pkcsl.sig -sha384 t3200.dat

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

$ openssl dgst -engine pkcsll -keyform engine -verify "pkcsll:token=YubiHSM;id=%04%01;
—type=public" -signature t3200.pkcsl.sig -sha384 t3200.dat

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

Verified OK

14.1.2 RSA-PSS

$ ~/openssl-1.1/bin/openssl dgst -engine pkcsll -keyform engine -sign
—"pkcsll:token=YubiHSM;id=%04%01;type=private" -out t6400.txt.sigpss -sigopt rsa_
—padding_mode:pss -sha384 t6400.txt

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

$ ~/openssl-1.1/bin/openssl dgst -engine pkcsll -keyform engine -verify
—"pkcsll:token=YubiHSM;id=%04%01;type=public" -signature t6400.txt.sigpss -sigopt rsa_
—padding_mode:pss -sha384 t6400.txt

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

Verified OK

93

YubiHSM 2 User Guide

14.1.3 ECDSA

$ openssl dgst -engine pkcsll -keyform engine -sign "pkcsll:token=YubiHSM;id=%02%03;
—type=private" -sha384 -out t3200.ecdsa.sig t3200.dat

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

$ openssl dgst -engine pkcsll -keyform engine -verify "pkcsll:token=YubiHSM;id=%02%03;
—type=public" -sha384 -signature t3200.ecdsa.sig t3200.dat

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

Verified OK

14.2 Encrypting and Decrypting

Three examples for using openSSL for encrypting and decrypting.

14.2.1 RSA-PKCS

$ cat t64.txt 4aa58c448£3264c777belb5ad94cf3e0a68911ed3£f18db9e568ff2179e263£76

$ ~/openssl-1.1/bin/openssl pkeyutl -engine pkcsll -keyform engine -pubin -encrypt -
—inkey "pkcsll:token=YubiHSM;id=%04%02;type=public" -pkeyopt rsa_padding_mode:pkcsl -in.
—164.txt -out t64.txt.pkcsl

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

§$ ~/openssl-1.1/bin/openssl pkeyutl -engine pkcsll -keyform engine -decrypt -inkey
—'"pkcsll:token=YubiHSM;id=%04%02; type=private" -pkeyopt rsa_padding_mode:pkcsl -in t64.
—txt.pkcsl

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:
4aa58c448£3264c777belb5ad94cf3e0a68911ed3£18db9e568££2179e263£76

14.2.2 RSA-OAEP

$ cat t64.txt 4aa58c448f3264c777belb5ad94cf3e0a68911ed3f18db9e568ff2179e263£76

$ ~/openssl-1.1/bin/openssl pkeyutl -engine pkcsll -keyform engine -pubin -encrypt -
—inkey "pkcsll:token=YubiHSM;id=%04%02;type=public" -pkeyopt rsa_padding_mode:oaep -
—.pkeyopt rsa_oaep_md:sha384 -pkeyopt rsa_mgfl_md:sha384 -in t64.txt -out t64.txt.oaep
engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

$ ~/openssl-1.1/bin/openssl pkeyutl -engine pkcsll -keyform engine -decrypt -inkey
—"pkcsll:token=YubiHSM;id=%04%02; type=private" -pkeyopt rsa_padding_mode:oaep -pkeyopt.
—rsa_oaep_md:sha384 -pkeyopt rsa_mgfl md:sha384 -in t64.txt.oaep
engine "pkcsll" set.

(continues on next page)

94 Chapter 14. OpenSSL with libp11 for Signing, Verifying and Encrypting, Decrypting

YubiHSM 2 User Guide

(continued from previous page)

Enter PKCS#11 token PIN for YubiHSM:
4aa58c448£3264c777belb5ad94cf3e0a68911ed3£18db9e568££2179e263£76

14.2.3 ECDH

$ openssl pkeyutl -engine pkcsll -keyform engine -derive -inkey "pkcsll:token=YubiHSM;id=
—%02%04 ; type=private" -peerkey peer_key.der

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:
34203079c38947a6792924£3e20657cd4£69dd36df395b7e759e727524da87dc

14.2. Encrypting and Decrypting 95

YubiHSM 2 User Guide

96 Chapter 14. OpenSSL with libp11 for Signing, Verifying and Encrypting, Decrypting

CHAPTER
FIFTEEN

OPENSSL WITH YUBIHSM 2 VIA ENGINE_PKCS11 AND
YUBIHSM_PKCS11

Install engine_pkcs11 and pkcs11-tool from OpenSC before proceeding. Depending on your operating system and
configuration you may have to install libp11 as well. If you are on macOS you will have to symlink pkg-config in order
to do so.

OpenSSL requires engine settings in the openssl.cnf file. Some OpenSSL commands allow specifying -conf
ossl.conf and some do not. Setting the environment variable OPENSSL_CONF always works, but be aware that some-
times the default openssl.cnf contains entries that are needed by commands like openssl regq.

In other words, you may have to add the engine entries to your default OpenSSL config file (openssl.cnf in the
directory shown by openssl version -d) or add other requirements for your OpenSSL command into the config
file.

It is suggested that you create a separate config file for interactions with the HSM in order to prevent conflicts with
previous settings or defaults.

15.1 Example: Creating an Alias

An alias can be created to easily read from a dedicated config file and ensure compatibility across systems

alias yubissl="OPENSSL_CONF=/path/to/yubihsm.conf openssl'

15.2 Example: Generating a Key in the Device

Here is an example of generating a key in the device, creating a self-signed certificate and then signing a CSR with it:

$ pkcsll-tool --module /path/to/yubihsm_pkcsll.so --login --pin 0001lpassword --
—keypairgen --key-type rsa:2048 --label "my_key" --usage-sign

Using slot O with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Key pair generated:

Private Key Object; RSA

label: my_key

ID: 0O4ec

Usage: sign

Public Key Object; RSA 2048 bits
label: my_key

(continues on next page)

97

https://github.com/OpenSC/libp11/blob/master/INSTALL.md
https://gist.github.com/aklap/e885721ef15c8668ed0a1dd64d2ea1a7#gistcomment-2814899

YubiHSM 2 User Guide

(continued from previous page)

ID: 0O4ec
Usage: none

$ openssl req -new -x509 -days 365 -subj '/CN=my key/' -sha256 -config engine.conf -
—engine pkcsll -keyform engine -key slot_0-label_my_key -out cert.pem

engine "pkcsll" set.

PKCS#11 token PIN:

$ OPENSSL_CONF=engine.conf openssl x509 -req -CAkeyform engine -engine pkcsll -in req.
—csr -CA cert.pem -CAkey slot_0-label my_key -set_serial 1 -sha256

engine "pkcsll" set.

Signature ok

subject=/CN=test

Getting CA Private Key

PKCS#11 token PIN:

MIICkzCCAXsCAQEwDQYJIKoZIhvcNAQELBQAWETEPMAOGA 1UEAwwGbXkga2V5MB4X
DTE3MDQyNDA3Mzc1MFoXDTE3MDUyNDA3Mzc 1MFowD jEMMAOGA 1UEAwwDZm9vMIIB
IjANBgkghkiGO9wOBAQEFAAOCAQ8AMIIBCgKCAQEAQBARILAT jSgKk20uRWrs91EC
MYjjZhxJE8IAMIiDDM2wSuQhB7A2CVW+/d1SGOk5cTEiasDBHbHIBc2w+xn®13Dh
8cXafvcFkjcNabHesrbcwRgItugw7PWBtyopWDtDhVWKS 1zkpDO8iKjwiYciweaP
96nEH1QPPRUp7bf3IE7RTXENAQJai6QIYBZOrzHMINrIz/6YaR2ua7SY7V/B3xal
7KsiQ8oHWuf+RDNk JOhbD+1£fgeMtN8x+W4XYnCPQPjJ/M£fjuHI2n5EM3Vb/plh9H
uT+D560zIk41FeXgC4gNu8fIv2KE1XBMuJCGRbyh5xk0dkQdvKxtVEfiDcwxBwID
AQABMAOGCSqGSIb3DQEBCWUAA4IBAQCHYysSKEU84T/YGhcjlpsdmobtyNhWc2ae/x
fmQpY/XGzQkSmUZJA+Z04IMUb1i7UKEOItmgS1U6j0BPy03U;javNHADPYcUZIS28
fPtzTKU3FAEBM/zkPXStBC09+N3414qSdir9hFM1/Cpk fP8PhteUQAqImX jbDVh
ghrf0g+kY3dAz91KLLXuA4Y fuC+eEJh0JGuXCivhGre5LL9njrajHnJ+HSt6HH]jC
R4U27/hzoK3r12XE5NjznjcaKk1AKFXZE92nqG/WY1iyLpNNSrN+AmEKrPOHb8My
Z11aGAfm3K9vLE jwrLQSAIKpMdpUcNE7Ay+ESEYTQpy43VvwI8vL

15.3 Example: Certificate Request

For these examples, we assume you have all defaults and the engine config below in engine.conf. This is an example
of how to do the latter in the certificate request example below.

$ cat > engine.conf < <EOF
openssl_conf = openssl_init

[openssl_init]
engines = engine_section

[engine_section]
pkcsll = pkcsll_section

[pkcsll_section]

engine_id = pkcsll
dynamic_path is not required if you have installed
the appropriate pkcsll engines to your openssl directory

(continues on next page)

98 Chapter 15. OpenSSL with YubiHSM 2 via engine_pkcs11 and yubihsm_pkcs11

YubiHSM 2 User Guide

(continued from previous page)
dynamic_path = /path/to/engine_pkcsll.{so|dylib}
MODULE_PATH = /path/to/yubihsm_pkcsll.{so|dylib}
it is not recommended to use '"debug" for production use
INIT_ARGS = connector=http://127.0.0.1:12345 debug
init = 0
EOF

$ OPENSSL_CONF=engine.conf openssl engine -t -c pkcsll (pkcsll) pkcsll engine [RSA, DSA,.
—DH, RAND] [available]

15.4 Example: Retrieve 64 Bytes of Data

Here is an example of using the YubiHSM 2 PRNG via OpenSSL to retrieve 64 bytes of data:

$ OPENSSL_CONF=engine.conf openssl rand -engine pkcsll -hex 64
engine "pkcsll" set.
2aae245fc6d1c0419684ee8968ce26fba2dc3bb48a91bae912c8a82b11db8186493
25800e6e984fedfal1940a24731dc2721431979a287252a214ebb87624dcfl

15.5 Example: Adding req entries

The following two examples will fail if you are only using the config above because it doesn’t have the req entries in
openssl.cnf. You can integrate the engine.conf entries into the system’s openssl.cnf, or add the following to
the end of the above engine.conf:

[req |

distinguished_name = req_dn
string_mask = utf8only

utf8 = yes

[reg_dn]
commonName = Common Name (eg, your name)

15.6 Example: Requesting certificate existing RSA key

Here is an example of requesting a certificate for an existing RSA key with ID 3:

$ openssl req -new -subj '/CN=test/' -sha256 -config engine.conf -engine pkcsll -keyform.
—.engine -key 0:0003

engine "pkcsll" set.

PKCS#11 token PIN:

MIICVDCCATwCAQAWDZENMASGA1UEAWWEdGVzdDCCASIwDQYJKoZIhvcNAQEBBQAD
ggEPADCCAQoCggEBAJoTtK9p5XNDBaqy651IBDS j 3mP9cpMOcw/sF/GZai6cx8Skf
DjAhqOkloN+]dc20snaBVSqCbsSjVTX£fc830B2q4M3U/t1/nfzTGHGCA48dbKUiz
M807KoyYzFds9b7ZnGrwCmeXWjt2sAEGiJYEQt9gS9twabnCwxY4KySa9aNSNeHt

(continues on next page)

15.4. Example: Retrieve 64 Bytes of Data 99

YubiHSM 2 User Guide

(continued from previous page)

AwnfP5V60C73xA7ATOP juiXq4 TWgMWzRDOIwA3h7MIgtev]io2MTPW1lspdGbYrxr
KsV£fl/AocrSqYb44pMaRbAJAgOpJ8hsPjc9gkInnrhmbk fVOVOAqQjgwgxZa+BCWn
gdG15HwKVFLu+X31sBw7xHH]t0YgeFpp8twfvTOCAWEAAQAAMAOGCSqGSIb3DQEB
CwUAA4IBAQACcyImLuv7CrZJ1RPO£5d6u5L£YUadPXSGnozf3Ebguel2B51etKjYK
3cY8mIrRP3 jRUSYWk3qoquZ7vCF7RNPfON+7 /blXHfoawx+ffE]l/ToUZ5xr7ILOV
Qz9qzEumdNmm6MoQPxPOgrb1oCAz103gkf+S4HZGnt083/D31znsEhCSakoAa44s
3I+7vmzhjwUZsvMUg3sg2NCjRYRX2RPIPmtkDgufqsdAkNyWH1zit jfVMZx£f8BcY
9DBrpQe106UbE1K9kYj2YBI9h/FxfNJUk8t+rCcS0OcQjmcRtgbHwhk2q77rapmg?2
Y1iaYEU1l/e5kl+v+OWEg7rvXgh/VkY2h

15.7 Example: Self-Signed Certificate Existing RSA Key

Or alternatively a self-signed certificate for the same existing RSA key with ID 3:

$ openssl req -new -x509 -days 365 -subj '/CN=test/' -sha256 -config engine.conf -engine..
—pkcsll -keyform engine -key 0:0003

engine "pkcsll" set.

PKCS#11 token PIN:

MIICmjCCAYICCQDX5mJwg+YmMjANBgkqhkiGOwOBAQsFADAPMQOwCWYDVQQDDAR®
ZXNOMB4XDTE3MDMXNTIwMDkzOVoXDTE4MDMXNTIwMDkzOVowDzENMASGA1UEAWWE
dGVzdDCCASIwDQY JKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJoTtK9p5XNDBaqy
65IBDSj3mP9cpMOcw/sF/GZai6cx8SkfDjAhqOkloN+Jdc20snaBVSqCbsSjVTXE
c830B2q4M3U/t1/nfzTGHGCA48dbKUizM807KoyYzFds9b7ZnGrwCmeXWjt2sAEG
iJYEQt9gS9twabnCwxY4KySa9aNSNeHtAwnfP5V60C73xA7ATOP juWXq4TWgMWzR
DOIwA3h7MIgtev]io2MTPWlspdGbYrxrKsV{fl/AocrSqYb44pMaRbAJAgOp]8hsP
jc9gkInnrhmbk fVOvOAqjgwgxZa+BCingdGl 5HwKVFLu+X31sBw7xHH]t0YgeFpp
8twfvTOCAWEAATANBgkghkiGIwOBAQsFAAOCAQEAHeSL6Quwqr8ST4SqnC1T2j jME
CcjAT5eK4MgK3ayAy/Y/vYGtzARGIi9tGatyV6AF js/0OMe3/8dudbBVdC2DaP1hTf
m4m1HShHKFdUlwUGcwYoVNquCz8d6hDu3nLOXvtFKX77aHHQZeB3tOuD8evYZATS
80AdulpkAdIV7CtCLbGhL1LD3siYkd5fD351hH1g8T2n5F4srDafQVdrDb/myYmI
2UmrZWvKDWZ3UvzKt 1XVS8omIx7aTrUAPqv/SEdpPm]vgOpgWTKvzAtsnsx1RQdd
tdt]/6nghwXVSNX1DbyhFVo6J2u8BMEss2iausoSZBzf+YDOw2H+4GH6E11TmA==

15.8 Example: s_server with RSA Key and Certificate

Here is an example of using OpenSSL s_server with an RSA key and cert with ID 3.

By default this command listens on port 4433 for HTTPS connections.

$ env OPENSSL_CONF=engine.conf openssl s_server -engine pkcsll -keyform
engine -key 0:0003 -cert rsa.crt -www

engine "pkcsll" set.

PKCS#11 token PIN:

Using default temp DH parameters

ACCEPT

ACCEPT

100 Chapter 15. OpenSSL with YubiHSM 2 via engine_pkcs11 and yubihsm_pkcs11

YubiHSM 2 User Guide

15.9 Example: s_server with ECDSA Key and Certificate

Here is an example of using OpenSSL s_server with an ECDSA key and cert with ID 2:

$ env OPENSSL_CONF=engine.conf openssl s_server -engine pkcsll -keyform
engine -key 0:0002 -cert ecdsa.crt -www

15.9. Example: s_server with ECDSA Key and Certificate 101

YubiHSM 2 User Guide

102 Chapter 15. OpenSSL with YubiHSM 2 via engine_pkcs11 and yubihsm_pkcs11

CHAPTER
SIXTEEN

USING OPENSC PKCS11-TOOL

It may be convenient to define a shell-level alias for the pkcs11-tool --module ... command. It may also be
convenient to add the environment variable to point at the yubihsm_pkcs11. so library.

To accomplish all of the above for the Bash shell one would add the following lines to the ~/.bash_profile or
~/ .bashrc file:

export YUBIHSM_PKCS11_CONF=/path/to/user/home/yhsm2-pll.conf
export YUBIHSM_ PKCS11_MODULE=/usr/local/lib/yubihsm_pkcsll.so
alias yhsm2-tool="pkcsll-tool --module ${YUBIHSM_PKCS11_MODULE} --login'

The --1login option was added because practically no operation of the HSM device can be performed without logging
in to it first.

Assuming that

* RSA signing/verifying key pair has been generated with id 0x0401 and capabilities including
asymmetric_sign_pkcs:asymmetric_sign_pss;

* RSA encrypting/decrypting key pair has been generated with id 0x0402 and capabilities including
asymmetric_decrypt_pkcs:asymmetric_decrypt_oaep;

* ECDSA signing/verifying key pair has been generated with id 0x0203 and capabilities including
asymmetric_sign_ecdsa:asymmetric_sign_decdsa;

e EC key pair for deriving ECDH keys has been generated with id 0x0204 and capabilities including
derive-ecdh;

The following commands illustrate the use of OpenSC pkcs11-tool with YubiHSM for cryptographic operations.

Note: The pkcsl1-tool can only perform private key-based cryptographic operations. It can decrypt a ciphertext or
create a digital signature, but it cannot encrypt a plaintext or verify a digital signature - OpenSSL is used to accomplish
that.

The following files are used as samples:
e t32.dat is a binary file containing 32 bytes;
* t3200.dat is a binary file containing 3200 bytes;
* t64.txt is a text file containing 65 bytes (64 ASCII characters and <CR>).

* peer_key.der is a file containing an EC public key in DER format

103

YubiHSM 2 User Guide

16.1 Creating Digital Signatures

Examples how to create digital signature.

16.1.1 RSA-PSS

1. Sign a file using RSA-PSS padding with SHA-384.

$ yhsm2-tool --sign -m SHA384-RSA-PKCS-PSS --id 0401 -i t3200.dat -o t3200.dat.
—.sig-pss

Using slot 0 with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using signature algorithm SHA384-RSA-PKCS-PSS

PSS parameters: hashAlg=SHA384, mgf=MGF1-SHA384, salt_len=48

2. Verify the created signature with OpenSSL (with libp11 PKCS#11 engine installed).

$ openssl dgst -engine pkcsll -keyform engine -verify "pkcsll:token=YubiHSM;id=
—%04%01; type=public" -signature t3200.dat.sig-pss -sigopt rsa_padding_
—mode:pss -sha384 t3200.dat engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

Verified OK

16.1.2 RSA-PKCS#1 v1.5

Sign a file using RSA-PKCS#1 v1.5 padding.

$ yhsm2-tool --sign --id 0401 -m SHA384-RSA-PKCS -i t3200.dat -o t3200.pkcsl.sig
Using slot O with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using signature algorithm SHA384-RSA-PKCS

$ openssl dgst -engine pkcsll -keyform engine -verify "pkcsll:token=YubiHSM;id=%04%01;
—type=public" -signature t3200.pkcsl.sig -sha384 t3200.dat

engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:

Verified OK

16.1.3 ECDSA

Sign a file using ECDSA with SHA-384 hash.

$ yhsm2-tool --sign --id 0203 -m ECDSA-SHA384 -f openssl -i t3200.dat -o t3200.ec384.sig2
Using slot O with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using signature algorithm ECDSA-SHA384

(continues on next page)

104 Chapter 16. Using OpenSC pkcsi1-tool

YubiHSM 2 User Guide

(continued from previous page)
$ openssl dgst -engine pkcsll -keyform engine -verify "pkcsll:token=YubiHSM;id=%02%03;
—type=public" -signature t3200.ec384.sig2 -sha384 t3200.dat
engine "pkcsll" set.

Enter PKCS#11 token PIN for YubiHSM:
Verified OK

16.2 Performing Decryption

Examples how to run decryption.

16.2.1 RSA-PKCS#1 v1.5

Decrypt a file using RSA-PKCS#1 v1.5 padding.

$ cat t64.txt 4aa58c448f3264c777belb5ad94cf3e0a68911ed3f18db9e568ff2179e263£76

$ yhsm2-tool --decrypt --id 0402 -m RSA-PKCS -i t64.txt.pkcsl
Using slot O with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using decrypt algorithm RSA-PKCS
42a58c448£3264c777belb5ad94cf3e0a68911ed3£18db9e568££2179e263£76

16.2.2 RSA-OAEP

Decrypt a file using RSA-OAEP and SHA-384. The file t64.txt was encrypted with RSA-OAEP using SHA-384 for
digest and Mask Generation Function (MGF).

$ cat t64.txt 4aa58c448f3264c777belb5ad94cf3e0a68911ed3£18db9e568££2179e263£76

$ yhsm2-tool --decrypt --id 0402 -m RSA-PKCS-OAEP --hash-algorithm SHA384 --mgf MGF1-
-.SHA384 -i t64.txt.oaep

Using slot O with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using decrypt algorithm RSA-PKCS-OAEP

OAEP parameters: hashAlg=SHA384, mgf=MGF1-SHA384, source_type=0, source_ptr=0x0, source_
—len=0

42a58c448£3264c777belb5ad94cf3e0a68911ed3£18db9e568££2179e263£76

$ yhsm2-tool --decrypt --id 0402 -m RSA-PKCS-OAEP --hash-algorithm SHA384 -i t64.txt.oaep
Using slot 0 with a present token (0x0)

Logging in to "YubiHSM".

Please enter User PIN:

Using decrypt algorithm RSA-PKCS-OAEP

OAEP parameters: hashAlg=SHA384, mgf=MGF1-SHA384, source_type=0, source_ptr=0x0, source_
—len=0

42a58c448£3264c777belb5ad94cf3e0a68911ed3£18db9e568ff2179e263£76

16.2. Performing Decryption 105

YubiHSM 2 User Guide

16.2.3 Derive ECDH Key

Derive an ECDH key using a private key on the YubiHSM and a public key read from a file.

$ yhsm2-tool --derive --input-file peer_key.der --id 0204
Logging in to "YubiHSM".

Please enter User PIN:

Using slot O with a present token (0x0)

Using derive algorithm 0x00001050 ECDH1-DERIVE
34a03079c38947a679a924f3e20657cd4£69dd36df395b7e759e727524da87dc

16.2.4 Obtaining Random Data

$ yhsm2-tool --pin xxxxxxxx --generate-random 64 | xxd -c 64 -p

Using slot 0 with a present token (0x0)
e3384c2a8£7263b46879d27d068779ebf82dfabe74bf057637a591a314dea86£12£35a79712950695dcbe..
—.54824eebe284430e942e1707991e315148e072d59£f7

106 Chapter 16. Using OpenSC pkcsi1-tool

CHAPTER
SEVENTEEN

YUBIHSM AND OPENSSL ON WINDOWS

This section covers setup, configuration, and usage of the Yubico YubiHSM2 with OpenSSL on Windows 10.

17.1 Overview

The Windows OS does not come with many utilities and support found on Linux. This covers installation and usage
on a bare Windows 10 system.

Aside from the bare OS, Visual Studio 2019 (v16.2) was installed. For this example, all of the binaries are 64 bit.
1. Download the YubiHSM?2 development kit.
2. Download the 1ibp11 source.
3. Download the OpenSC installer.
4. Download the Shining Light Productions OpenSSL installer.

17.2 Installation

17.2.1 YubiHSM2 Development Kit
1. Unzip the downloaded file to install the development kit. The development kit has utilities and a couple of MSI
files.

2. Install the files (connector and CSG provider) to connect to the YubiHSM2. You should now be able to use the
yubi-shell.exe to connect to the YubiHSM?2.

3. Create the YubiHSM2 connector configuration file. Then set the YUBIHSM_PKCS11_CONF environmental vari-
able with its path and name. See below for example.

Yubihsm_pkcsll.cnf connector = http://127.0.0.1:12345

107

YubiHSM 2 User Guide

17.2.2 OpenSC and OpenSSL Distributions

The Shining Light Productions OpenSSL distribution is not an official distribution, it is provided by volunteers. Throw
them a donation!

The OpenSC and OpenSSL distributions will be installed under C:\Program Files.
After OpenSC is installed, you should be able to access the YubiHSM2 usingpkcs11-tool.

C:\PROGRA~1\0OpenSC Project\OpenSC\tools>set YUBIHSM_PKCS11_CONF=C:\Users\your_name \
—yubihsm2-sdk-2019-03-win64-amd64 \yubihsm2-sdk\yubihsm_pkcsll.cnf
C:\PROGRA~1\0OpenSC Project\OpenSC\tools>pkcsll-tool --module

C:\Users\your_name\yubihsm2-sdk-2019-03-win64-amd64\yubihsm2-sdk\bin \yubihsm_pkcs11.d1l..
—--login --pin 0001password -I

Cryptoki version 2.40 Manufacturer Yubico (www.yubico.com)
Library YubiHSM PKCS#11 Library (ver 2.1)
Using slot 0 with a present token (0x0)

C:\PROGRA~1\0OpenSC Project\OpenSC\tools>

17.2.3 libp11 Source

Download the 1ibp11 source from GitHub. This will need to be compiled.
1. Open a Visual Studio x64 Native Tools command prompt.
2. Go to the source directory.
3. Type: nmake -f Makefile.mak OPENSSL_DIR=\progra~1\OPENSS~1 BUILD_FOR=WIN64

The .d11 files will be in the source directory.

17.2.4 Configuration

1. Two environmental variables must be set: YUBTHSM_PKCS11_CONF and OPENSSL_CONF. These must be set to the
location and file name of the respective configuration files. The OpenSSL configuration file is configured with
the engine configuration at the top. The HSM PIN, which is its password, may be set in this file. The password
here is the YubiHSM2 default password for the default administratoruser.

yubi_openssl.cnf openssl_conf = openssl_init [openssl_init]

engines = engines_section [engines_section]

pkcsll = pkcsll_section [pkcsll_section]

engine_id = pkcsll

dynamic_path = C:\\Users\\your_name\\Documents\\sourceproj\\ libpll-master\\src
pkcs11.d1l MODULE_PATH = C:\\Users\\your_name\\yubihsm2-sdk-2019-03-win64-amd64\\
—yubihsm2-sdk\\bin

yubihsm_pkcsll.dll PIN = 0001lpassword init = 0

2. To run the OpenSSL tool commands, the rest of the file contains the normal configuration sections. OpenSSL
v1.1.1c requires more configuration than v1.0.2, which is on Ubuntu. The following sections are for creating
a self-signed certificate authority certificate. This is just for demonstration, and not to be placed on the FCT
stations.

108 Chapter 17. YubiHSM and OpenSSL on Windows

YubiHSM 2 User Guide

More yubi_openssl.cnf [req]

prompt = no

distinguished_name = req_distinguished_name

default_bits = 4096

string _mask = utf8only

default_md = sha256

x509_extensions = v3_ca_ext [req_distinguished_name]
countryName = US stateOrProvinceName = Washington

localityName = Seattle

organizationName = Banana Inc.

organizationalUnitName = Fruit Bunch

commonName = Root Test Cert [v3_ca_ext |

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:true

keyUsage = critical, digitalSignature, cRLSign, keyCertSign
certificatePolicies = 2.5.29.32, @policysection [policysection]
policyIdentifier = 1.3.5.8

userNotice.l = @notice [notice]

explicitText = "Yubi Demo Banana Inc. Development Certificate"

3. At this point, you should be able to create a self-signed certificate. In this example, key ID 0:0064 is the
identifier for a 4096-bit RSA key.

C:\Users\your_name>openssl req -new -x509 -days 365 -sha256 -engine pkcsll -keyform.
—.engine -key 0:0064 -out cert.pem engine "pkcsll" set.
C:\Users\your_name>dir cert.pem
Volume in drive C is 0OSDisk
Volume Serial Number is AC07-5227
Directory of C:\Users\your_name 08/22/2019 02:20 PM 2,322 cert.pem
1 File(s) 2,322 bytes
0 Dir(s) 179,197,755,392 bytes
free C:\Users\your_name>openssl x509 -noout -text -in cert.pem
Certificate: Data: Version: 3 (0x2)
Serial Number:
2d:71:6a:fd:8b:ab:5a:b8:3e:5c:cc:cO®:bc:bl:a5:11:df:7£:2b:1d
Signature Algorithm: sha256WithRSAEncryption Issuer: C = US,
ST = Washington, L = Seattle, O = Banana Inc.,
OU = Fruit Bunch,
CN = Root Test Cert Validity Not Before:
Aug 22 21:20:07 2019 GMT
Not After : Aug 21 21:20:07 2020 GMT Subject: C = US,
ST = Washington, L = Seattle, O = Banana Inc.,
(0]1) Fruit Bunch,
CN = Root Test Cert Subject Public Key Info:
Public Key Algorithm: rsaEncryption RSA Public-Key:
(4096 bit)
Modulus: 00:bd:0c:71:1a:4b:19:86:17:d0:d1:bf:c7:27:83:

17.2. Installation 109

YubiHSM 2 User Guide

110 Chapter 17. YubiHSM and OpenSSL on Windows

CHAPTER
EIGHTEEN

CONFIGURING YUBIHSM 2 FOR JAVA CODE SIGNING

The purpose of the scripts in the YubiHSM repository is to generate an RSA key pair and enroll for an X.509 certificate
to a YubiHSM 2 using YubiHSM-Shell as the primary software tool. In addition to YubiHSM-Shell, Java KeyTool and
OpenSSL are used.

Two scripts are published in the folder Scripts: the Windows PowerShell script YubiHSM_Cert_Enroll.psl and the
Linux Bash script YubiHSM_Cert_Enroll.sh.

See What SolarWinds taught us about the importance of a secure code signing system for understand the critical need
for code signing.

When the RSA keypair and certificate have been enrolled to the YubiHSM 2, the YubiHSM 2 PKCS #11 library can
then be used with the Sun JCE PKCS #11 Provider.

More specifically, the key/certificate can be used for signing Java code, for example using JarSigner.
The following steps are performed by the scripts:

1. Generate an RSA key pair in the YubiHSM 2.

2. Export the CSR (Certificate Signing Request).

3. Sign the CSR into an X.509 certificate (using OpenSSL CA as an example).

4. Import the signed X.509 certificate into the YubiHSM 2.

The scripts are not officially supported and are provided as-is. The scripts are intended as references, and YubiHSM 2
administrators should ensure to read Yubico’s documentation on managing YubiHSMs, see Introduction before making
any deployments in production.

18.1 Prerequisites

18.1.1 Operating System and SDKs

Use a computer with Windows 10 or a Linux distribution as the operating system.

Attach the YubiHSM 2 device to one of the available USB ports on the computer.

Install the following software SDKs and tools:
* YubiHSM SDK (including YubiHSM-Setup, YubiHSM-Shell and YubiHSM-Connector)
* OpenSSL
e Java JDK (including KeyTool and JarSigner)

111

https://www.yubico.com/blog/what-solarwinds-taught-us-about-the-importance-of-a-secure-code-signing-system/
https://developers.yubico.com/YubiHSM2/Releases/
https://wiki.openssl.org/index.php/Binaries
https://www.oracle.com/java/technologies/javase-downloads.html

YubiHSM 2 User Guide

18.2 Basic Configuration of YubiHSM 2

Start the YubiHSM-Connector, either as a service or from a command prompt.

Launch the YubiHSM-Shell in a different command prompt, and run the following to make sure that the YubiHSM 2
is accessible:

yubihsm-shell

Using default connector URL: http://127.0.0.1:12345
yubihsm> connect

Session keepalive set up to run every 15 seconds
yubihsm> session open 1 password

Created session 0

yubihsm> list objects 0

Found 1 object(s)

id: 0x0001, type: authentication-key, sequence: 0

18.3 Configuration File for YubiHSM 2 PKCS #11

Create the configuration file yubihsm_pkcs11.conf and store it in the same folder as the yubihsm_pkcs11 module
(which is typically C:\Program Files\Yubico\YubiHSM Shell\bin\pkcs11\ on Windows and /usr/1ib64/
pkcs11/ on Linux).

Configure the yubihsm_pkcs11.conf according to the instructions on the Configuration webpage. If the YubiHSM-
Connector is running on the same machine, it is sufficient to copy the Configuration File Sample and paste it into the
file yubihsm_pkcs11.conf.

18.4 Configuration File of Sun JCE PKCS #11 Provider with YubiHSM
2

Next, the YubiHSM 2 PKCS #11 module must be configured for use with the Sun JCE PKCS #11 Provider.

Create the configuration file sun_yubihsm2_pkcs11.conf with the following content:

name = yubihsm-pkcsll
library = C:\Program Files\Yubico\YubiHSM Shell\bin\pkcsll\yubihsm_pkcs11l.dl1l..
—attributes(*, CKO_PRIVATE_KEY, CKK_RSA) = {CKA_SIGN=true}

18.5 Environment Variables

The path to the YubiHSM PKCS #11 configuration file must be set in the environment variables for Windows and
Linux:

YUBIHSM_PKCS11_CONF = <YubiHSM PKCS11 folder>/yubihsm_pkcsll.conf

On Windows it is also recommended to add the following folder paths to the environment variable PATH:

112 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

https://docs.oracle.com/javase/9/security/pkcs11-reference-guide1.htm#JSSEC-GUID-30E98B63-4910-40A1-A6DD-663EAF466991
https://docs.oracle.com/javase/9/security/pkcs11-reference-guide1.htm#JSSEC-GUID-30E98B63-4910-40A1-A6DD-663EAF466991

YubiHSM 2 User Guide

'C:\Program Files\Yubico\YubiHSM Shell\bin'
'C:\Program Files\OpenSSL-Win64\bin'
'C:\Program Files\Java\jdk-<version>\bin

18.6 Java Keystore

The Java keystore contains a number of pre-configured trusted CA-certificates. The Java signing certificate in the
YubiHSM 2 will be validated against the trusted CA-certificates in the Java keystore.

It is therefore recommended to check that the CA-certificate(s) that have been used to issue the Java signing certificates
are present in the Java keystore. This can be checked by running the following command:

keytool -list -cacerts -storepass <password to Java keystore>

If it is not present, add the CA-certificate(s) as trusted certificate(s) to the Java keystore. The Java tool KeyTool can be
used for this purpose.

In order to update the Java keystore, start a console in elevated mode (“Run as administrator”” on Windows or use “sudo”
on Linux), and then run the commands below to import and verify the CA-certificate(s):

keytool -import -noprompt -cacerts -storepass <password to Java keystore> -alias <alias.
—0f the CA-cert> -file <path to the CA-certificate file>

keytool -list -cacerts -storepass <password to Java keystore> -alias <alias of the CA-
—cert>

Below are examples of the commands to import and verify the CA-certificate(s) are:

keytool -import -noprompt -cacerts -storepass changeit -alias MyCACert -file ./
—rootCACert.pem

keytool -list -cacerts -storepass changeit -alias MyCACert

18.6.1 Signing JAR files

Consider the following minimal Java source file:

cat HelloWorld. java
public class HelloWorld {
public static void main(String [] args) {
System.out.println("Hello, world");
b
3

Compile the java source file and create an (unsigned) .jar file:

javac HelloWorld.java
jar cfe unsigned.jar HelloWorld HelloWorld.class

We can now sign this JAR file with the RSA signing key we have stored in our YubiHSM 2 and create a signed JAR
file:

18.6. Java Keystore 113

YubiHSM 2 User Guide

jarsigner -tsa http://timestamp.digicert.com -addProvider SunPKCS11 -providerArg ./
—.sunpkcsll.conf -keystore NONE -storetype PKCS11 -storepass 0001password -signedjar..
—signed. jar ./unsigned.jar rsaSign

jar signed.
Warning:

The signers certificate is self-signed.
The timestamp will expire on 2031-11-10.

In this case, a self-signed certificate was used, but for others to be able to validate the certificate you should use a public
CA to sign your Java code.

Note that we are using a timestamp server to record the current time in the signed JAR file. This way we do not need
to resign the JAR file when the signing certificate expires.

18.6.2 Verifying signed JAR files

To verify the signature on the signed JAR, we use the public key certificate stored on the YubiHSM 2.

jarsigner -verify -addProvider SunPKCS11 -providerArg ./sunpkcsll.conf -keystore NONE -
—storetype PKCS11 -storepass 0001lpassword ./signed.jar

jar verified.

If we trust the signer and the Certificate Authority that issued the signer’s certificate, we can decide to run the software
in the JAR file:

java -jar signed.jar
Hello, world

Note that access to the YubiHSM?2 is not required when verifying a signature on a signed JAR file as the certificate is
included in the JAR file itself. Verification will fail however unless the certificate was signed by a trusted Certification
Authority.

18.6.3 Windows PowerShell script for generating keys and certificates

The PowerShell script YubiHSM_Cert_Enroll.psl in the Scripts folder can be executed on Windows to generate an
RSA key pair and enroll for an X.509 certificate to a YubiHSM 2.

YubiHSM-Shell is used in command line mode.

OpenSSL is used as a basic CA for test and demo purposes only. For real deployments, however, the OpenSSL CA
should be replaced with a proper CA that signs the CSR into an X.509 certificate.

114 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

18.6.4 Parameters

The PowerShell script has the following parameters.

Parameter Purpose
Algorithm Signature algorithm Default: RSA2048
AuthKeyID
Keyld of the YubiHSM 2 authentication key
Default: 0x0001
AuthPW
Password to the YubiHSM 2 authentication key
Default:
CAcertificate
CA certificate used by OpenSSL (for test purposes)
Default: TestCACert.pem
CAPrivateKey
CA private key used by OpenSSL (for test purposes)
Default: TestCAKey.pem
CAPrivateKeyPW
Password of the OpenSSL keystore (for test purposes)
Default:
CreateCSR Generate keys and export CSR and then exit
CSRfile
File to save the CSR request to
Default: ./YHSM2-Sig.(date and time).csr
Dname
X.500 Distinguished Name to be used as subject fields
Default:
Domain
Domain in the YubiHSM 2 Default: 1
ImportCert Import signed certificate created with CreateCSR
KeyID
KeyID where the RSA key pair is stored
Default: 0x0002
KeyName

Label of the key/certificate, same as Java alias
Default: MyKey1

continues on next page

18.6. Java Keystore

115

YubiHSM 2 User Guide

Table 1 - continued from previous page

Parameter Purpose
LogFile
Log file path
Default:

WorkDirectory/YubiHSM_PKCS11_Enroll.log

PKCS11Config
Java JCE PKCS #11 configuration file
Default: ./sun_yubihsm2_pkcs11.conf
Quiet Suppress output
SignedCert Signed certificate file. Default:
WorkDirectory

Working directory where the script is executed
Default: $PSScriptRoot

All parameters have default settings in the PowerShell script. The parameters can either be modified in the PowerShell
script or be used as input variables when executing the script.

18.6.5 Example of how to execute the PowerShell script:

$.\YubiHSM_PKCS11_Setup.psl -KeyID 0x0003

18.7 Linux Bash Script for Generating Keys and Certificates

The Bash script YubiHSM_Cert_Enroll. sh in the Scripts folder can be executed on Linux to generate an RSA key
pair and enroll for an X.509 certificate to a YubiHSM 2.

YubiHSM-Shell is used in command line mode.

OpenSSL is used as a basic CA for test and demo purposes only. For real deployments, however, the OpenSSL CA
should be replaced with a proper CA that signs the CSR into an X.509 certificate.

18.7.1 Parameters

The Bash script has the following parameters.

Parameter Purpose

-a, -algorithm Signature algorithm Default: RSA2048
-c, -cacertificate
CA certificate used by OpenSSL

(for test purposes) Default: ./TestCACert.pem

-C, -createcsr Generate keys and export CSR and then exit
-d, -domain Domain in the YubiHSM 2 Default: 1

continues on next page

116 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

Table 2 - continued from previous page

Parameter

Purpose

-f, -pkes11configfile

-F, -csrfile

-k, -keyed

-n, -keyname

-0, -dname

-p, -authpassword

-q, -quiet

-1, -caprivatekeypw

-8, -caprivatekey

-S, -signedcert

-t, -logfile

Java JCE PKCS #11 configuration file
Default: ./sun_yubihsm2_pkcs11.conf

File to save the CSR request to
Default: ./YHSM2-Sig.(date and time).csr”

KeyID where the RSA key pair will be stored
Default: 0x0002

Label of the key/certificate, same as Java Alias
Default: MyKeyl

X.500 Distinguished Name to be used as subject
fields Default:

Password to the YubiHSM 2 authentication key
Default:

Suppress output

Password of the OpenSSL keystore (for test
purposes) Default:

CA private key used by OpenSSL
(for test purposes) Default: ./TestCAKey.pem

Signed certificate file. Mandatory when using
-importcert Default: ”

Log file path
Default: ./YubiHSM_PKCS11_Enroll.log

All parameters have default settings in the Bash script. The parameters can either be modified in the Bash script or be

used as input variables when executing the script.

18.7. Linux Bash Script for Generating Keys and Certificates 117

YubiHSM 2 User Guide

18.8 Example of How to Execute the Bash Script

$./YubiHSM_PKCS11_Setup.sh -k 0x0002 -n MyKey -d 1 -a rsa2048 -i 0x0001 -p password -c .
—./TestCACert.pem -s ./TestCAKey.pem -f ./sun_yubihsm2_pkcsll.conf

18.9 List the Objects on YubiHSM 2

The created RSA key pair and X.509 certificate can now be accessed through YubiHSM 2 PKCS11 and be used with
Sun JCE PKCS11 Provider.

It is recommended to check that the RSA key pair and the X.509 certificate have been created on the YubiHSM 2. It is
possible to use either YubiHSM-Shell or Java KeyTool to list and check those objects on the YubiHSM 2.

18.9.1 Example: YubiHSM-Shell Command

yubihsm> list objects 0

Found 3 object(s)

id: 0x0001, type: authentication-key, sequence: 0

id: 0x0002, type: opaque, sequence: 1

id: 0x0002, type: asymmetric-key, sequence: 0

yubihsm> get objectinfo 0 0x0002 asymmetric-key

id: 0x0002, type: asymmetric-key, algorithm: rsa2048, label:
e e e e e e ", length: 896, domains: 1,
sequence: 0, origin: generated, capabilities: exportable-under-wrap:
sign-attestation-certificate:sign-pkcs:sign-pss

18.9.2 Example: Java KeyTool Command

keytool -list -keystore NONE -storetype PKCS11 -providerClass sun.security.pkcsll.
—SunPKCS11 -providerArg sun_yubihsm2_pkcsll.conf -storepass 0001password -v

Keystore type: PKCS11
Keystore provider: SunPKCS11-yubihsm-pkcsll

Your keystore contains 1 entry

Alias name: MyKeyl
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=YubiHSM Attestation id:0xd353
Issuer: EMAILADDRESS=admin@test.se, CN=TestCA, OU=Test, O=Yubico, L=Stockholm, .,
—ST=Stockholm, C=SE
Serial number: 23161118fc1d59fbab75138b562a4b00c8163c3d
Valid from: Wed Apr 14 10:43:28 CEST 2021 until: Sat Aug 27 10:43:28 CEST 2022
Certificate fingerprints:
SHA1: 38:1E:81:1A:0A:6E:B0:87:E0:B6:5C:8A:B8:C6:EC:91:1D:51:28:1A
SHA256: CC:F7:26:6C:70:12:7E:E3:62:22:71:9B:3C:32:16:C8:C6:34:10:F:49:22:7A:18:70:09: .

(continues on next page)

118 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

(continued from previous page)
—E3:3E:73:42:38:47
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 1

18.10 Using YubiHSM 2 with Java Signing Applications

When the YubiHSM 2 has been configured with an RSA key pair and a X.509 certificate, the YubiHSM 2 PKCS11 can
now be used with any Java signing application that utilizes the default Sun JCE PKCS11 Provider.

For example, JarSigner can be used to sign a JAR-file with the YubiHSM 2 and validate the signed JAR-file.

18.10.1 Example: Use JarSigner to sigh a JAR-file

jarsigner -keystore NONE -storetype PKCS11 -providerClass
sun.security.pkcsll.SunPKCS11 -providerArg sun_yubihsm2_pkcsll.conf
lib.jar MyKeyl -storepass 0001password -sigalg SHA256withRSA -tsa
http://timestamp.digicert.com -verbose

jar signed.

18.10.2 Example: Use JarSigner to Validate a Signed JAR-file

jarsigner -verify lib.jar -verbose -certs

jar verified.

18.11 Signing XML files using YubiHSM 2

Many applications make use of XML to structure data stored in files, databases, or elsewhere. To establish trust in such
data, these documents can be signed using XML Signatures.

In order to sign XML documents you can use a tool called xmlsectool. As xmlsectool is implemented as a Java
application using the JCA en JCE standards, we can use a YubiHSM 2 to store the signing keys we use for generating
XML signatures.

18.11.1 A simple example

As an example, generate an RSA key pair and a self-signed certificate stored on the YubiHSM 2:

$ keytool -keystore NONE -storetype PKCS11 -storepass 0001password -addProvider..
—SunPKCS11 -providerArg ./sunpkcsll.conf -genkey -alias rsaSign -keyalg RSA -dname.
—CN=rsaSign

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a.
—validity of 90 days

for: CN=rsaSign

18.10. Using YubiHSM 2 with Java Signing Applications 119

https://en.wikipedia.org/wiki/XML_Signature
https://shibboleth.atlassian.net/wiki/spaces/XSTJ3/overview

YubiHSM 2 User Guide

As before, we are using the SunPKCS11 provider to interface with the YubiHSM2, similar to other examples in this
chapter.

18.11.2 Signing XML files

Let’s generate a very simple XML file:

$ echo '<x></x>' > unsigned.xml

Sign the XML file using xmlsectool:

$ xmlsectool --sign --pkcsllConfig ./sunpkcsll.conf --inFile unsigned.xml --keyAlias.
—rsaSign --keyPassword 0001password --outFile signed.xml

INFO XMLSecTool - Reading XML document from file 'unsigned.xml'

INFO XMLSecTool - XML document parsed and is well-formed.

INFO XMLSecTool - XML document successfully signed

INFO XMLSecTool XML document written to file /home/user/signed.xml

The signed XML document nog contains a Signature element containing the a SignatureValue and a KeyInfo
element containing a copy of the X.509 certificate on the YubiHSM 2:

<x>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04/xmldsig-more#rsa-sha256"/>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature" />
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#sha256"/>
<ds:DigestValue>9hy1oK7rXCJudrTqlLZ7cGUH3rPyGm4Ql1C8VRv6mX60=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>ce5S00QsD...aiUDiOkaBiWI8A40lAuRcIgme®Pgelg==</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>uSsZh/aAk. . .MK4yY1LTUQF2HzS09d4vGdWzwm4Z630t6w==</ds :Modulus>
<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
<ds:X509Data>
<ds:X509Certificate>MIICxzCCAa+g. ../BUk07i8reQw+6qA==</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
</x>

In the above document, we have shortened the Base64 encoded text elements for brevity.

120 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

18.11.3 Verifying XML digital signatures

To verify the signed XML file, we can also use xmlsectool:

$ xmlsectool --verifySignature --inFile signed.xml --pkcsllConfig ./sunpkcsll.conf --
—keyAlias rsaSign --keyPassword 0001password

INFO XMLSecTool - Reading XML document from file 'signed.xml'

INFO XMLSecTool - XML document parsed and is well-formed.

INFO XMLSecTool - XML document signature verified.

Here, we are referring to the signing certificate stored on the YubiHSM 2 to be able to verify signatures when direct
access to the YubiHSM 2 is not available, we need to export the signing certificate and distribute it to whoever needs
to be able to verify such signatures.

To export the signing certificate stored on a YubiHSM 2 using keytool:

$ keytool -keystore NONE -storetype PKCS11 -storepass 0001password -addProvider..
—SunPKCS11 -providerArg ./sunpkcsll.conf -exportcert -alias rsaSign -rfc > signing-crt.
—.pem

We can now use xmlsectool to verify an XML digital signature using the public key in the signing certificate:

xmlsectool --verifySignature --inFile signed.xml --certificate signing-crt.pem
INFO XMLSecTool - Reading XML document from file 'signed.xml'

INFO XMLSecTool - XML document parsed and is well-formed.

INFO XMLSecTool - XML document signature verified.

In case the signature does not verify, xmlsectool will complain:

$ xmlsectool --verifySignature --inFile signed.xml --certificate signing-crt.pem
INFO XMLSecTool - Reading XML document from file 'signed.xml'

INFO XMLSecTool - XML document parsed and is well-formed.

WARN XMLSignature - Signature verification failed.

ERROR XMLSecTool - XML document signature verification failed

make: *** [verify] Error 7

In this case, either the XML document was changed after its signature was generated, or the public key in the certificate
does not match the private key used for signing. Either way, the XML signature cannot be used to establish trust in the
XML document’s authenticity.

For more information, see Using PKCS11 Credentials from the xmlsectool documentation.

18.11.4 A real-world example: SAML metadata signing

One example application of using XML signatures is in identity federation, where users can logon to a web application
after authenticating somewhere else. A well-known protocol used for identity federation is SAML 2.0, and this protocol
is based on XML.

The parties where users may want to logon (called Service Providers) need to exchange information with the parties
where users authenticate (called Identity Providers), and this SAML 2.0 Metadata is typically signed using XML Sig-
natures so it can be automatically verified by SAML peers.

Consider the following SAML 2.0 metadata document for a fictitious Service Provider which specifies its identifier
(entity ID), its SAML signing certificate and the URL endpoint an Identity Provider can direct users to in order to
process a SAML authentication response:

18.11. Signing XML files using YubiHSM 2 121

https://shibboleth.atlassian.net/wiki/spaces/XSTJ3/pages/2369683717/Using+PKCS11+Credentials
https://en.wikipedia.org/wiki/SAML_metadata

YubiHSM 2 User Guide

<md:EntityDescriptor ID="XYZ123456"
xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" entityID="https://example.com/saml/
—Sp.xml">
<md: SPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol" >
<md :KeyDescriptor>
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>
MIHNnMIGiAgEBMAOGCSqGSIb3DQEBBAUAMA8XDTALBgNVBAMMBHNpZ24wHhcNM jMwM
TAIMTIQODExWhcNMjgwNjI3MTIOODEXWjAPMQOwCWwYDVQQDDARZzaWduMEwwDQY JKo
ZIhvcNAQEBBQADOWAWOAIxXAKrBRhYU®3MSaU8 jBPNUx9wcc6bWhMpinZmINROINdh
3SkPddh7zskcLGonFsmasQIDAQABMAOGCSqGSIb3DQEBBAUAAZEADNg7opb78PNoL
ZH1QzYqmxVOZSc3rEO01TWOOW/Xq7+770hU5vVAVYnXpQL1v6sB
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</md:KeyDescriptor>
<md:AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST".
—index="0" Location="https://example.com/saml/acs"/>
</md:SPSSODescriptor>
</md:EntityDescriptor>

Note that the certificate in the Metadata is intended for validating SAML protocol messages and is typically different
from the certificate used for validating SAML 2.0 metadata. Either or both certificates can have their private keys stored
on the YubiHSM 2, but be aware that SAML protocol messages are signed much more frequently than SAML metadata
documents, so the former may require multiple YubiHSM 2 deployments in order to scale with the load on your SAML
IdP or SP.

To sign this SAML metadata document, we again use xmlsectool with the signing key stored in a YubiHSM 2. We
also specify ID as the name of the XML attribute to use in the XML signature.

xmlsectool --sign --pkcsllConfig ./sunpkcsll.conf --inFile unsigned.xml --keyAlias..
—.rsaSign --keyPassword 0001password --outFile signed.xml --referenceldAttributeName ID

As before, we will need to export the SAML signing certificate to distribute among our SAML peers so they can validate
our signed metadata.

18.12 Example Java code using YubiHSM 2

To interface to cryptographic keys stored on a YubiHSM 2 from Java code, we can use the SunPKCS11 provider.

This has the added benefit that we can write code that is independent of the specific HSM used, as long as the HSM
has a PKCS#11 module available.

Apart from writing code, we need to configure all components correctly in order for the code to work correctly. This
includes the configuration of the YubiHSM 2 connector, Java keytool, and the SunPKCS11 provider.

To illustrate, we will code a simple RSA signing example below.

122 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

18.12.1 Setup

Let’s assume we have a single YubiHSM 2 connected locally via USB. Store the connector configuration in a file named
yubihsm. conf and point to it via the YUBIHSM_PKCS11_CONF environment variable so that the YubiHSM 2 PKCS#11
module will be able to find it:

$ echo "connector=yhusb://" > yubihsm.conf export YUBIHSM_ PKCS11_CONF=yubihsm.conf

We will be using Java’s keytool to manage keys and certificates on the YubiHSM 2. For convenience, store the
PKCS#11 configuration options in a file named keytool.config:

$ cat keytool.config
keytool.all = -keystore NONE -storetype PKCS11 -storepass 0001password -addProvider..
—SunPKCS11 -providerArg ./sunpkcsll.conf

The file sunpkcs11.conf is used to configure the PKCS#11 module we want to use, and the PKCS#11 attributes we
want to define for objects created or imported via the SunPKCS11 provider:

$ cat sunpkcsll.conf

name = YubiHSM2

library = /usr/local/lib/pkcsll/yubihsm_pkcsll.dylib

attributes(*, CKO_PRIVATE_KEY, CKK_RSA) = {
CKA_SIGN=true

}

Finally, we can create an RSA key pair and a self-signed certificate using Java’s keytool.

$ keytool -conf keytool.config -genkey -alias rsaSign -keyalg RSA -dname CN=rsaSign
Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a.
—validity of 90 days for: CN=rsaSign

Note that when using keytool, the keys are generated in software and subsequently imported into the YubiHSM 2. To
generate keys on the YubiHSM 2 itself, use the yubihsm-shell tool.

The generated certificate should now be visible from keytool. For example:

$ keytool -conf keytool.config -list
Keystore type: PKCS11
Keystore provider: SunPKCS11-YubiHSM2

Your keystore contains 1 entry

rsaSign, PrivateKeyEntry,

Certificate fingerprint (SHA-256):
02:50:E4:1B:D8:FB:1B:07:AB:8C:05:85:37:BD:FB:89:6F:57:1F:CC:86:EC:
E5:F2:BE:61:76:68:38:58:F0:39

18.12. Example Java code using YubiHSM 2 123

YubiHSM 2 User Guide

18.12.2 Code

Now, let’s turn to coding. In this example, we will be signing files using the RSA private key stored on our YubiHSM
2.

The data to be signed is a simple text file, for instance:

$ date > datatosign

The code needs to do some file I/O, and use the JCA and JCE standards to generate and verify signatures. Let’s start
with the necessary imports:

import java.nio.file.Path;

import java.nio.file.Files;

import java.io.FileOutputStream;

import java.security.cert.X509Certificate;
import java.security.¥*;

To keep things simple, we do not handle Exceptions here and define some hardcoded parameters:

public class RsaSignP11 {
public static void main(String... argv) throws Exception {

String pkcsllConf = "sunpkcsll.conf";

String userPin = "0001password";
String keyAlias = "rsaSign";
String infile = "datatosign";
String outfile = "signature.bin";

// see below ...
h
h

Using hard-coded parameters is only to keep the example concise. Normally these would be command-line parameters
or read from a configuration file. Passwords should never be hard-coded and are typically read from a terminal on
demand.

To continue with our example code, first load and configure the SunPKCS11 provider:

Provider provider = Security.getProvider("SunPKCS11"); provider = provider.
—configure(pkcsllConf); Security.addProvider(provider);

Load the PKCS11 KeyStore, authenticating with the User PIN:

KeyStore ks = KeyStore.getInstance("'PKCS11", provider); ks.load(null, userPin.
—toCharArray());

Retrieve the private key, and sign the data read from the datatosign file using the SHA256withRSA algorithm:

PrivateKey privateKey = (PrivateKey) (ks.getKey(keyAlias, null));

Signature rsaSig = Signature.getInstance("'SHA256withRSA"); rsaSig.initSign(privateKey) ;.
—byte[] datatosign = Files.readAllBytes(Path.of(infile)); rsaSig.update(datatosign) ;.
~byte[] sigBytes = rsaSig.sign();

Optionally, the signature can be stored in a signature file for others to verify:

124 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

YubiHSM 2 User Guide

new FileOutputStream(outfile).write(sigBytes);

While we are at it, let’s also verify if the signature generated in sigBytes can be verified using the corresponding
public Key.

First we need to extract the public key from the certificate pointed to by our rsaSign alias:

X509Certificate cert = (X509Certificate) ks.getCertificate(keyAlias); PublicKey..
—publicKey = cert.getPublicKey();

Again using the SHA256withRSA algorithm, verify that the signature in sigBytes matches the data in datatosign
using our publicKey:

rsaSig = Signature.getInstance("SHA256withRSA");
rsaSig.initVerify(publicKey);

rsaSig.update(datatosign);

assert rsaSig.verify(sigBytes) == true : "verify failed";

To test, compile the source:

$ javac RsaSignPl1l.java

Run the program:

$ java RsaSignP11

There is no output, meaning the assert was passed without issues and the signatures verifies.

18.12.3 Troubleshooting

Debugging issues with HSMs can be difficult. It may help to enable logging using the following JVM system properties:
For PKCS#11 keystore specific debugging info:

-Djava.security.debug=pkcsllkeystore

For general SunPKCS11 provider debugging info:

-Djava.security.debug=sunpkcsll

Also, refer to the documentation on PKCS#11 with YubiHSM 2 for generating debug logs from the PKCS#11 module
itself.

18.12. Example Java code using YubiHSM 2 125

YubiHSM 2 User Guide

126 Chapter 18. Configuring YubiHSM 2 for Java Code Signing

CHAPTER
NINETEEN

DEPLOYING YUBIHSM 2 WITH ACTIVE DIRECTORY CERTIFICATE
SERVICES

This document is intended to enable systems administrators to deploy YubiHSM 2 with YubiHSM Key Storage Provider
so that the Active Directory Certificate Services Certificate Authority (ADCS CA) root key is created securely on the
YubiHSM 2 and so that a hardware-based backup copy of key materials has been produced.

As a guide for deployment, it covers basic topics. Instructions should be modified as required for your specific environ-
ment. It is assumed that installation is performed on a single server destined to become a production or lab Certificate
Authority root. It is also assumed that you are familiar with the concepts and processes of working with Microsoft
ADCS.

Plan a public key infrastructure (PKI) that is appropriate for your organization. For guidance on setting up a PKI, see
Microsoft’s TechNet article on Public Key Infrastructure Design Guidance

We recommend that you install and test the installation and setup of the YubiHSM 2 in a test or lab environment before
deploying to production.

Scenario: In a Windows PKI environment, protect the CA root key in hardware.

Benefits: YubiHSM 2 guards the CA root key and protects all signing and verification services using the root key.

Note: Although the screenshots in this guide are specific to Windows Server 2016, Server 2019 is also supported.

19.1 Prerequisites and Preparations

The audience of this document is expected to be an experienced systems administrator with a good understanding of
Windows Server management. In addition, it helps to be familiar with the terminology, software and tools specific to
YubiHSM 2. As a primer for these, refer to the :: Glossary in this guide.

In order to follow the steps provided in this guide, be sure you meet the following prerequisites, having:

* Access to Microsoft Windows Server 2012, R2/2016, 2019 with Active Directory in an offline, air-gapped en-
vironment, such as a secure computer network that is physically isolated from unsecured networks such as the
internet. You must also have elevated system privileges.

* YubiHSM 2 software and tools for Windows downloaded from the YubiHSM 2 Release page and available on
the system to be used.

* Two (2) factory-reset YubiHSM 2 devices, one for deployment and one for backup in hardware.

* Key custodians identified as per local requirements and available to participate. For more information about key
custodians and the associated M of N key shares, see the next chapter in this guide.

127

https://social.technet.microsoft.com/wiki/contents/articles/2901.public-key-infrastructure-design-guidance.aspx
https://developers.yubico.com/YubiHSM2/Releases/

YubiHSM 2 User Guide

19.2 Key Splitting and Key Custodians

The preferred method for backing up the YubiHSM 2 keys calls for key splitting and restoring or regenerating, often
referred to as setting up an M of n scheme (Shamir’s Secret Sharing (SSS)). This process ensures no individual can
export key material from the YubiHSM 2 and provides a way to control the import of key material that has been exported
under wrap from one device into other devices. For example, you would export and import objects for backup purposes,
as described in Backup and Restore Using YubiHSM KSP (Windows Only).

The key that is split among a predetermined number (n) of key custodians (also known as key shareholders) is known
as the wrap key. Each custodian receives their own unique share. To use the key, a minimum number of shares (m)
must be present so that the key can be regenerated (sometimes called “rejoined””). This minimum number of custodians
is called the privacy threshold. If this threshold is not attained, the wrap key cannot be regenerated. This minimum
number, n, should be larger than one.

The exact number of key shares and the privacy threshold are determined by the requirements of your organization. If
your organization has policies in place that define how this procedure should be performed, be sure you know these
policies before proceeding. You should also have a predetermined practice in place specifying both:

* How the key shares must be recorded (written on paper, photographed, locally printed, or some other means) and

* How they must be stored between uses (for example, offsite archive, safety deposit box, sealed envelope).

?l? f

m = Privacy threshold

Figure: Privacy Threshold

The YubiHSM Setup Tool enables you to perform the key splitting and assigning of shares to key custodians. To carry
out the setup process, you need to know who the wrap key custodians will be. During setup, all key custodians must
be physically present to record their shares. Exact instructions for key splitting and assigning of shares are given in
Configuring the Primary YubiHSM 2 Device.

19.3 Deploying YubiHSM2 with ADCS Overview

With a YubiHSM 2 device now configured for use with YubiHSM Key Storage Provider and Microsoft Active Directory
Certificate Services, the next set of steps covers the deployment in the ADCS environment. Note that YubiHSM Key
Storage Provider software must be installed on the system before proceeding.

Deploying YubiHSM consists of three steps as follows. These steps are described in detail in the following procedure.

1. Configuring the Windows Registry for the YubiHSM Key Storage Provider for the primary YubiHSM 2 device
that was configured earlier

2. Configuring ADCS (if not already present)
3. Configuring a new ADCS CA with a root CA key being generated on the device

Figure: Pre- and Post-Conditions

128 Chapter 19. Deploying YubiHSM 2 with Active Directory Certificate Services

https://dl.acm.org/doi/10.1145/359168.359176

YubiHSM 2 User Guide

Preconditions:

- Pre-configured primary device

- YubiHSM 2 software installed on air-gapped computer
-Windows Server with Active Directory, elevated permissions user

Configure
ADCS CA
and create
CA root key

N Configure Configure ™.
l'__ _/ registry S ADCS Lt

Postconditions:
- €S installed and configured
- CA root key created on primary device

The host that these steps are performed on is assumed to be a member server in the Active Directory domain (domain-
joined, not a Domain Controller).

These instructions include steps for a basic configuration and should be performed by an experienced system adminis-

trator.

19.4 Configuring the Windows Registry

For ADCS to use the YubiHSM 2, the following registry entries need to be changed from their default values. The
HKEY_LOCAL_MACHINE\SOFTWARE\Yubico\YubiHSM subkey was created during installation. Be sure to make a
backup of your Registry before you make any changes. To configure the Windows Registry:

1.
2.

Click Start > Run, type regedit in the Run dialog box, and click OK.

Locate and then click the registry subkey for YubiHSM (HKEY_LOCAL_MACHINE\SOFTWARE\Yubico\
YubiHSM).

. To change the URI where the connector is listening, change the following entry: “ConnectorURL”=http://

127.0.0.1:12345

To change the ID of the application authentication key (object ID 3 was used as an example in this guide; if you
used another object ID be sure to enter the correct information). For our example, because the hexadecimal value
of x00000003 resolves to 3 in the Windows Registry, change the entry as follows: “AuthKeysetID”=3

To change the password for the application authentication key that is stored in the registry change the entry for:
“AuthKeysetPassword”={password}. The password is stored here for the Key Storage Provider to use when
authenticating to the device.

To save your changes, exit the Windows Registry.
The YubiHSM Connector service reads the configuration file, yubihsm-connector-config.yaml.

Depending on your local setup, for instance if you are running multiple instances of the software on the same host,
you may need to edit this configuration file to make sure that parameters are consistent between the configuration
file and the Windows Registry. On Windows, the yubihsmconnector.config.yaml file is available at C:\
programdata\yubiHSM\yubihsmconnector.yaml - you will need administrator rights to modify the file.

19.4. Configuring the Windows Registry 129

YubiHSM 2 User Guide

19.5 Setting Up Your Enterprise Certificate Authority

19.5.1 To Configure ADCS

If you already have Certification Services installed, you can skip these steps.

1. On a Windows Server host, joined to an existing Active Directory domain, log on into the server as a domain
administrator.

Click Start > Administrative Tools, then click Server Manager.
Under Roles Summary, click Add roles and features.
Use the Add Roles and Features Wizard to add the Active Directory Certificate Services role, and click Next.

In the Select role services wizard page, select the option for Certification Authority, then click Next.

SANE U T

Complete the wizard and reboot the host if prompted.

19.5.2 To Configure the ADCS CA and Create the Root Key

After you have completed the feature installation, you need to create the Enterprise CA instance.
1. If you haven’t already, do the following:

a. On a Windows Server host, joined to an existing Active Directory domain, log into the server as a domain
administrator.

b. Click Start > Administrative Tools, then click Server Manager.

2. In Server Manager, start the Add Roles and Features Wizard and select Role-based or feature based installa-
tion. Click Next.

[98]

. In the Credentials page, confirm that you are logged in as a domain administrator. If you are not, you will
not be able to create an Enterprise CA in the subsequent steps. Click Next.

4. In the Role Services page, select the option for Certification Authority, and then click Next.
5. In the Setup Type page, select the option for Enterprise CA, and then click Next.

6. In the CA Type page, select the option for Root CA, and then click Next.

7. In the Private Key page, select the option for Create a new private key, and then click Next.
8. In the Cryptography for CA page, do the following:

a. Click Select a cryptographic provider and select RSA#YubiHSM Key Storage Provider from the list
displayed. This indicates that the root key should be generated on the device.

b. Click Key Length and select the key size you want from the list displayed. Options for key size 2048-bit
or 4096-bit. The default setting is 2048.

c. For Select the hash algorithm for signing certificates issued by this CA, select a desired hash algorithm,
such as SHA256. The default setting is SHA256.

d. Select the option to Allow administrator interaction when the private key is accessed by the CA. This
allows the private key to be exported for backup purposes (so it can be restored to another server). Click
Next.

9. In the CA Name page, accept the defaults. Click Next.

10. In the Validity Period page, accept the default or set another validity period appropriate for your purposes. Click
Next.

130 Chapter 19. Deploying YubiHSM 2 with Active Directory Certificate Services

YubiHSM 2 User Guide

11. In the CA Database page, accept the default location for logs. Click Next.

12. In the Confirmation page, the important detail is that the YubiHSM Key Storage Provider is being used to
store the CA private key. Click Configure.

The Progress page appears, briefly, as the local CA database is created, and changes are written to Active
Directory.

13. Finally, confirm the presence of the Configuration succeeded message in the Results page. Click Close.

19.5. Setting Up Your Enterprise Certificate Authority 131

YubiHSM 2 User Guide

132 Chapter 19. Deploying YubiHSM 2 with Active Directory Certificate Services

CHAPTER
TWENTY

INSTALLING THE YUBIHSM 2 TOOLS AND SOFTWARE

To complete the procedures in this guide, install the YubiHSM 2 tools and software that will be needed for this.

Tip: A generic prompt, $, is used in command line examples in this document. Depending on your command line
application, your prompt may be different.

20.1 About the YubiHSM Software

The following YubiHSM items of software are used in this guide. They are included as part of the archive file you
downloaded.

20.2 Installation

1. Unzip the downloaded archives of the SDK containing the YubiHSM libraries and tools and move the contents
to an appropriate location.

2. Complete the step for your operating system.
* On your Windows system, run both installers:
— yubihsm-cngprovider-windows-amd64.msi (YubiHSM Key Storage Provider)
— yubihsm-connector-windows-amd64.msi (YubiHSM Connector for Windows)
* On a Debian-based system, run the following command:

$ dpkg -i ./libykhsmauthl_*.deb ./libyubihsm-usbl_*.deb ./
libyubihsm-httpl_*.deb ./libyubihsml_%*.deb ./yubihsm-shell_%*.deb

* On a Redhat-based system, run the following command:
$ yum install ./yubihsm-shell-*.rpm

3. (Windows system) Set the ADCS service dependency for the YubiHSM Connector service via an elevated/admin
Windows Command Prompt. This prevents an error which occurs if the ADCS services start before the YubiHSM
connector is running.

a. List the current dependencies with sc qc “certsvc”

133

https://developers.yubico.com/YubiHSM2/Releases/

YubiHSM 2 User Guide

> sc qc “certsvc”
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: certsvc

TYPE : 110 WIN32_OWN_PROCESS (interactive)
START_TYPE H AUTO_START

ERROR_CONTROL : 1 NORMAL

BINARY_PATH_NAME : C:\Windows\system32\certsrv.exe
LOAD_ORDER_GROUP

TAG I\

DISPLAY_NAME : Active Directory Certificate Services
DEPENDENCIES

SERVICE_START_NAME : localSystem

b. Add the YubiHSM Connector dependency to ADCS with the command: sc config "certsvc"
depend="yhconsrv"

> sc config "certsvc" depend="yhconsrv"
[SC] ChangeServiceConfig SUCCESS

After the command is entered, the dependency can be verified with sc qc “certsvc”

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: certsvc

TYPE : 110 WIN32_OWN_PROCESS (interactive)
START_TYPE : 2 AUTO_START

ERROR_CONTROL 1 NORMAL

BINARY_PATH_NAME : C:\Windows\system32\certsrv.exe
LOAD_ORDER_GROUP

TAG : 0

DISPLAY_NAME : Active Directory Certificate Services
DEPENDENCIES : yhconsrv

SERVICE_START_NAME : localSystem

To remove dependencies for ACDS, use the same command for adding dependencies with a blank
depend field: sc config "certsvc" depend=""

134 Chapter 20. Installing the YubiHSM 2 Tools and Software

CHAPTER
TWENTYONE

VERIFYING THE DEFAULT CONFIGURATION OF THE YUBIHSM 2

Verify the results of the YubiHSM Setup program using the YubiHSM Shell program. Log in using the application
authentication key.

The YubiHSM 2 device comes with a single factory-installed authentication key whose default password is password.
As part of the configuration in this guide, this default authentication key will be destroyed. If the YubiHSM 2 is reset
to its default configuration, any non factory-installed objects stored on it are also destroyed. Reset instructions can be
found in Resetting Device to Factory Settings.

We reiterate that you will need two YubiHSM 2 devices to complete all steps of this guide, because you will be deploying
the first device and creating a backup of all key material on the second device.

These steps also verify that neither of the YubiHSM 2 devices have been tampered with.
To verify that YubiHSM 2 devices still have the default configuration by following the steps below:

1. Verify the YubiHSM 2 setup, in your Command Prompt, run the following command:

$ yubihsm-shell

Do one of the following:

* If the application that calls the YubiHSM Connector is running on a local host, start the Connector with the
command yubihsm-connector without additional parameters. In Windows Server 2012 SP2 or higher,
yubihsm-connector. exe is located in C:\Program Files\YubiHSM Connector\.

* If the application is running on a VM or a different server, start the YubiHSM Connector on the host
operating system in networking mode. For example, if the host machine’s IP address is 192.168.100.
252, launch the Connector on the host OS with the command yubihsm-connector -1 192.168.100.
252:12345

Tip: For testing or debugging the YubiHSM Connector, the flag -d can be set.

2. To gain shell access to the YubiHSM 2, launch the YubiHSM Shell program:
a. Open a Command Prompt.
b. Run the command yubihsm-shell.
c. If a networked Connector is used, set the parameter --connect <connector URL>.

If the YubiHSM Connector is running on a host machine to which the YubiHSM 2 is physically connected,
start the YubiHSM Shell program in networked mode.

$ yubihsm-shell --connector http://192.168.100.252:12345

135

YubiHSM 2 User Guide

where —

The host server’s IP address is 192.168.100.252

Tip: For testing or debugging the YubiHSM Shell, the flag -d can be set.

3. To connect to the YubiHSM 2, at the yubihsm command line, type connect. A message saying that you have a
successful connection is displayed.

4. To open a session with the YubiHSM 2, type session open 1 (where 1 is the ID of the default authentication
key pre-installed on the device).

5. Type in the default password: password. A message confirming that the session has been set up successfully is
displayed.

6. You now have an administrative connection to the YubiHSM 2 and you can list the objects available by typing
list objects 0 and pressing Enter. Your results should be similar to the following:

Found 3 object(s)

id: 0x0002, type: wrap-key, sequence: 0

id: 0x0003, type: authentication-key, sequence: 0
id: 0x0004, type: authentication-key, sequence: 0

As you can see by looking at their IDs, these objects correspond to the wrap key, the application authentication
key and the audit key that were just created.

7. To obtain more information about any of the objects and its capabilities — for example, the application authen-
tication key (object ID 3) — run the objectinfo command with the appropriate ID format, for example:

yubihsm> get objectinfo 0 3 authentication-key

The response you receive should look similar to the following:

id: 0x0003, type: authentication-key, algorithm:
aes128-yubico-authentication, label: "Application auth key", length:
40, domains: 1, sequence: 0, origin: imported, capabilities:
exportable-under-wrap:generate-asymmetric-key:
sign-attestation-certificate:sign-pkcs:sign-pss:sign-ecdsa,
delegated_capabilities:exportable-under-wrap:
generate-asymmetric-key:sign-attestation-certificate:sign-pkcs:
sign-pss:sign-ecdsa

8. Review the responses to confirm that YubiHSM 2 has now been configured to:
¢ Generate asymmetric objects
* Compute signatures using RSA-PKCS1v1.5
* Compute signatures using RSA-PSS
» Export other objects under wrap
* Import wrapped objects
* Mark an object as exportable under wrap

In addition, this object (the application authentication key, object ID 3) also has delegated capabilities that can
be bestowed on other objects that it creates. For more information on delegated capabilities, see Capability.

9. To exit, type quit.

136 Chapter 21. Verifying the Default Configuration of the YubiHSM 2

CHAPTER
TWENTYTWO

CONFIGURING THE PRIMARY YUBIHSM 2 DEVICE

The YubiHSM Setup program, which is part of the YubiHSM 2 tool set, is used to perform the initial configuration
of the primary YubiHSM 2 device. This program configures the device with the requirements needed for deploying
YubiHSM 2 to safely store the ADCS root CA key. Specifically, during the setup process the YubiHSM is configured
so that the necessary key material is generated on the device:

* One wrap key — The wrap key is split among a determined number of key custodians, and each share is recorded
by each custodian. See Key Splitting and Key Custodians.

* One application authentication key (auth key) — The auth key for authenticating to the YubiHSM 2 through
the KSP. This allows the KSP to perform operations in the YubiHSM 2.

Note: This initial configuration replaces the default auth key with a new one, which will only be
operable in the same domain as the asymmetric key. The Domain that is used to compartmentalize
the YubiHSM 2 determines this behavior.

Tip: For test purposes you can set the yubihsm-setup -d flag to keep the default auth key with the
administrative privileges; this will allow you to delete keys on the YubiHSM 2 for test purposes only.
For production purposes, however, the yubihsm-setup command must be executed without the -d
flag to ensure that the factory preset auth key is properly deleted from the YubiHSM 2 device.

* One audit key — The audit key is used for accessing the internal audit log of the device and resetting the audit
log. The audit log retains information about the last 62 operations. It is also used to purge the log if needed.
Depending on your local requirements, you may not need to create an audit key. If you are unsure of your
requirements, we suggest you create an audit key.

The auth key and the audit key are exported under wrap to a file in the current working directory on the machine where
the YubiHSM Setup program is installed.

Tip: The YubiHSM Setup tool has a help argument that you can call to learn more about its usage.

Note: To safeguard the integrity of the device, configuration must be performed in an air-gapped environment.

137

YubiHSM 2 User Guide

22.1 Summary of Configuration Steps

After you have inserted the primary device into the air-gapped system, the configuration steps are diagrammed in the
following image, and listed below. They are described in detail in the next section, Configure Primary YubiSHM 2
Procedure.

22.2 Configuration Steps

Preconditions:
- Factory preset device available to host
- YubiHSM 2 software installed on air-gap computer

I) AddRSA . Enter Create
L\) Authenticate ? decryption .’ domains Wrapkey
_— (ID)

Setup Record :reT:ation \\\ Create \\\

mofn Wrapkey pp = puditkey (ID,

for Wrapke share(s) Authkey (ID, ’ assword) ‘
pkey, password) p

Wrapkey Custodian

Postconditions:
- Wrapkey created and split among custodians
- Application Authkey created and saved to disk under wrap
- Auditkey created and saved to disk under wrap
- Default Authkey deleted
Figure: Pre- and Post-Conditions
1. Authenticate:
a. Set up communication between the YubiHSM 2 tools and the device.

b. Start the configuration process. Run the YubiHSM Setup with the argument ksp, specifying the Connector
URL if necessary.

c. Start the YubiHSM Setup process and authenticate to the YubiHSM device.
2. Add RSA decryption and capabilities if required. For example:
» Active Directory Certificate Services (ADCS), does not require RSA decryption.
» Microsoft SQL Server Always Encrypted, needs RSA decryption capabilities.
Enter Domains. Enter the names of the domains in which you need the auth key and audit key to be available.
Create the wrap key and its ID.

Setupm of n for Wrap key. Split the wrap key into shares and specify the privacy threshold.

A

Record Wrap key shares. Have the wrap key custodians record the number of shares required to rejoin the wrap
key.

138 Chapter 22. Configuring the Primary YubiHSM 2 Device

YubiHSM 2 User Guide

7. Create the application authentication key (auth key). Includes creating the ID and password that are used to
authenticate to the device by the KSP in Windows so the KSP can perform operations in YubiHSM 2.

8. Create the audit application key (audit key) (optional), include ID and password.

The original default auth key is deleted and setup process finishes.

Preconditions:

- Configured primary YubiH5M device

- Pre-configured secondary YubiHSM device inserts

- YubiHSM 2 software installed on air-gapped computer

- Set of keys from primary YubiHSM2 exported to disk under wrap

Locate

— Run

N,

L) (or export) setup restore Authenticate Restore Restore the

o wrapped script Wrapkey (ID) other keys (ID)
keys

Postconditions:
- Key material on primary YubiHSM device restored onto a secondary device

Figure: Flowchart illustrating the YubiHSM 2 setup for Windows

22.3 Configure Primary YubiSHM 2 Procedure

1. Authenticate

a. Enable communication with the YubiHSM 2 device by ensuring that the YubiHSM Connector service
(yhconsrv in Windows) is running the YubiHSM Connector on the system where the device is inserted.

If the YubiHSM Connector is running on a host machine to which the YubiHSM 2 is physically connected,
the Connector should be started in networked mode. For example, if the host IP address is 192.168.100.252,
the Connector should be started on the host machine with the following command:

yubihsm-connector -1 192.168.100.252:12345

You can validate that the connector is running properly by typing the following URI into your browser:
http://192.168.100.252:12345/connector/status. The output in the web browser should be similar to:

status=0K

serial=*

version=1.0.0

pid=*
address=192.168.100.252
port=12345

b. Run YubiHSM Setup with the argument ksp. To do this:
i. Launch your command line application.

ii. Navigate to the directory for which you have write access and that contains the YubiHSM Setup pro-
gram.

iii. Run the YubiHSM Setup with the argument ksp.

22.3. Configure Primary YubiSHM 2 Procedure 139

http://192.168.100.252:12345/connector/status

YubiHSM 2 User Guide

yubihsm-setup ksp

If the application calling the Setup is installed on a machine other than the YubiHSM Connector,
use the connector flag to specify the Connector URL, for example:

yubihsm-setup --connector http://192.168.100.252:12345 ksp

Tip: The setup tool also has a help argument that you can call to learn more about its usage.

c. Start the YubiHSM Setup process. Type the default auth key password: password and press Enter.

A message confirms that the default auth key was used and that you have successfully authenticated to the
device: Using authentication key 0x0001.

Object IDs are displayed in the YubiHSM Setup Tool using hexadecimal numbers, in this case the default
auth key has ID 1, or 8x0001 in hexadecimal.

2. You are prompted to add RSA decryption capabilities. Do one of the following:

* If you plan to use your YubiHSM 2 exclusively with an application that only needs signing capabilities, RSA
decryption is not required. Active Directory Certificate Services (ADCS), for example, does not require
RSA decryption.

Type n.

* If you are planning on using the same YubiHSM 2 device for something that does require the capability
to decrypt RSA, then you do need RSA decryption. The Microsoft SQL Server Always Encrypted, for
example, needs RSA decryption capabilities.

Type y.

Tip: If you are unsure what selection to make, type n.

. At the prompt, enter the domain(s) you need the auth key and audit key to be available in.

The auth and audit keys are generated after you create the wrap key. You will only need one domain for the
purposes of completing this guide. Do the following:

Unless you have a requirement to assign more than one domain, type a single number between 1 to 16 and press
Enter.

In this guide, we assume that domain 1 was entered. Confirmation will look like the following:

got domains [
One

]

or

Using domains:
One
Enter wrap keyID (0 to choose automatically):

4. Generate a wrap key and enter its ID.

140

Chapter 22. Configuring the Primary YubiHSM 2 Device

YubiHSM 2 User Guide

The wrap key is very important as it allows you to export and import objects from and to the device. For example,
you would export and import objects for backup purposes, as described in Backup and Restore Key Material. Do
one of the following:

* To manually assign a wrap key ID, type the number and press Enter. As object ID 1 is already in use by
the default auth key, we recommend you assign id 2 to the wrap key. Type 2 and press Enter.

* To allow the system to assign a wrap key ID automatically, type ® and press Enter.

In both cases, a confirmation message similar to the following is displayed:

Stored wrap key with ID 0x0002 on the device

5. Specify the number of shares to split the wrap key to distribute it equally among a number of key custodians.
Also, specify the privacy threshold, which is the number of shares that must be present for the wrap key to be
regenerated.

For this example, we assume that the wrap key is split into three shares, out of which at least two shares must be
present in order to use the key. If there are not two key custodians present, the wrap key cannot be rejoined. At
the prompt, do the following:

a. Enter the number of shares. In this example, enter 3.
b. Enter the privacy threshold. In this example, enter 2.

When defined, the three wrap key custodians each take their turn in front of the screen to record their respective
share. A warning notice appears advising you that the shares are not stored anywhere.

6. Have each custodian record their key shares. Each custodian completes these steps.
a. At the prompt, record their key share.
b. Confirm their key share by typing y and press Enter.
c. Turn it over to the next custodian. The screen buffer is cleared before each share is presented.

The following is an example of a share presented on the screen:

2-1-WWmTQj5PHGIQ4H9Y20uURm8m7 5QkD0eYzFz0X1VyMpAOeF3YKYZyAVdMOWY4GErc1VuAC
Have you recorded the key share? (y/n)

A notice is displayed, warning if the shares are not stored anywhere.

Note: Be sure to record the shares and store them safely if you want to re-use the wrap key for this device in the
future.

Important: Each custodian must record the whole string presented, including the prefix (in this case) 2-1-
which indicates the number of shares determined to be required to rejoin (or the privacy threshold) and the
number of the share itself out of the total number of shares being created.

Tip: For non-production and test purposes, such as in a lab scenario, it is not necessary to specify that the wrap
key should be shared between key custodians but instead just use one solitary key. To do this, when configuring
the device using YubiHSM Setup, indicate the number of shares to be 1 and the privacy threshold to also be 1.

When this step is completed, the wrap key generated is saved to the HSM 2 device.

22.3. Configure Primary YubiSHM 2 Procedure 141

YubiHSM 2 User Guide

7. Create an auth key.

The auth key is used to authenticate to the device by the Key Storage Provider (KSP) in Windows, allowing the
KSP to perform operations in YubiHSM 2.

a. Since object ID 1 and 2 are already in use by the default auth key and the wrap key respectively, the example
in this guide assumes that the auth key to be created next gets ID 3. Do one of the following:

* To manually assign an auth key ID, type 3 and press Enter.
* To instead allow the system to assign a wrap key ID automatically, type ® and press Enter.
b. Create and enter a password of at least eight (8) characters for the auth key.

Be sure to store the password of the auth key that you will use in a way so that it cannot be compromised.
You need this password later to configure the YubiHSM KSP DLL for use later. See Configure the YubiHSM
2 Software on Windows.

Enter the auth key password and press Enter. A confirmation message appears.

Stored auth key with ID 0x0003 on the device
Saved wrapped auth key to {path} 0x0003.yhw

The wrapped auth key (0x0003.yhw) has been saved to the same path as the location of the YubiHSM
Setup program. Although encrypted using the wrap key, we recommend that you do not store keys - even
under wrap - on a network-accessible or otherwise potentially comparable storage media.

Leave the * . yhw- file with the wrapped auth key where it was saved for now. It will be used later to create
a backup. Delete the auth key after you make the backup.

8. Decide whether to create an audit key. To log into the YubiHSM 2 with the audit key, both the key ID and the
password will be needed.

The audit key is used to access the internal audit log of the device which holds information about the last 62
operations performed. It is also used to reset the log if needed. Depending on your local requirements, you may
not need to create an audit key. If you are unsure of your requirements, we suggest you create an audit key.

a. At the prompt to create an audit key, type y.
b. Assign a key ID to the audit key.

Make a note of the ID you enter (for example, key ID 4).
c. Enter the audit key password.

Store this password so that it cannot be compromised.

The audit key is exported under wrap to the current working directory. Using our example of key ID 4, the file
is named 0x0004 . yhw.

The setup tool finishes by letting you know that the default, factory-installed auth key has been deleted.

Previous authentication key 0x0001 deleted
All done

The YubiHSM Setup application exits. The YubiHSM 2 device is now equipped with the symmetric keys for wrap,
audit, and application authentication.

142 Chapter 22. Configuring the Primary YubiHSM 2 Device

YubiHSM 2 User Guide

22.4 Verifying the Setup

You can verify the results of the YubiHSM Setup program by using the YubiHSM Shell program, and logging in using
the auth key (we used object ID 3 in this guide). To verify the YubiHSM Setup:

1. In your command line application (where $ is the prompt), run YubiHSM Shell program. To do this, if you
haven’t already, launch your command line application and navigate to the directory containing the YubiHSM
Shell program. Then type the following command and press Enter.

$ yubihsm-shell

2. To connect to the YubiHSM, at the yubihsm prompt, type connect and press Enter. A message verifying that
you have a successful connection is displayed.

3. To open a session with the YubiHSM 2, type session open 3 and press Enter.

4. Type in the password for the auth key. You will receive a confirmation message that the session has been set up
successfully.

5. You now have an administrative connection to the YubiHSM 2 and can list the objects available. To list the
objects, type list objects 0 and press Enter. Your results should be similar to the following:

Found 3 object(s)

id: 0x0002, type: wrapkey, sequence: 0
id: 0x0003, type: authkey, sequence: 0
id: 0x0004, type: authkey, sequence: 0

As you can see by looking at their IDs, these objects correspond to the wrap key, the auth key and the audit key
that were just created.

To obtain more information about any one of the objects, for example, the auth key (object ID 3), including its
capabilities, type the following command and press Enter:

yubihsm> get objectinfo ® 3 authentication-key

The response you receive should look similar to the following:

id: 0x0003, type: authkey, algorithm: yubico-aes-auth,
label: "Application auth key", length: 40, domains: 1,
sequence: 0, origin: imported, capabilities:
asymmetric_gen:asymmetric_sign_pkcs:asymmetric_sign_pss:
export_wrapped: import_wrapped:export_under_wrap,
delegated_capabilities:
asymmetric_gen:asymmetric_sign_pkcs:asymmetric_sign_pss:
export_under_wrap

This indicates that YubiHSM 2 as it has now been configured will later on allow the KSP to leverage the device
to:

¢ Generate asymmetric objects

* Compute signatures using RSA-PKCS1v1.5
* Compute signatures using RSA-PSS

» Export other objects under wrap

e Import wrapped objects

* Mark an object as exportable under wrap

22.4. Verifying the Setup 143

YubiHSM 2 User Guide

In addition, this object (the auth key, object ID 3) also has so-called delegated capabilities. Delegated capabilities
define the set of capabilities that can be set or “bestowed” onto other objects that are created by it.

6. To exit, type quit.

144 Chapter 22. Configuring the Primary YubiHSM 2 Device

CHAPTER
TWENTYTHREE

CONFIGURE THE YUBIHSM 2 SOFTWARE ON WINDOWS

Before using the YubiHSM 2 on Windows, there are two YubiHSM 2 software components to be configured:
* The YubiHSM 2 KSP.
* The YubiHSM 2 Connector service.

The configuration steps are described in the sections below.

Important: Make a backup of your Windows Registry before you make any changes.

23.1 Configure the KSP Settings in the Windows Registry

To enable Microsoft Cryptographic API Next Generation (CNG) to access the YubiHSM 2 KSP, the following registry
entries must be changed from their default values. The YubiHSM 64-bit KSP subkey and the YubiHSM 32-bit KSP
subkey were created during the YubiHSM SDK installation:

HKEY_LOCAL_MACHINE\SOFTWARE\Yubico\YubiHSM

The edits to be made produce a result like the one illustrated below:

145

YubiHSM 2 User Guide

File Edt View Favorites Help
4 {M Computer Name Type Data
b 4y HKEY_CLASSES_ROOT REG_SZ (value not set)

b)) HKEY_CURRENT_USER 3| AuthKeysetiD REG_DWORD 000000003 (3)
4 - Ji HKEY_LOCAL_MACHINE 2| AuthKeysetPass... REG_SZ password

b-4é BCDODDDD0OO a¥\ConnectorURL REG_SZ hittp://192.168.100.252:12345
bl HARDWARE
bk SAM
- Ju SECURITY
4-), SOFTWARE
! b) Classes
b Ju Clients
b Ju Microsoft
- ODBC
b Ju Oracle
b Ju Policies
-~ Ju RegisteredApplications
4-), Wowb43ZNode

p - Classes

b - Clients

b Ju Google

['>rj, Microsoft

B -4 MozillaPlugins

p-). ODBC

b - Oracle

b-)l Policies

j, RegisteredApplications

b SNIA

4-). Yubico

“- e YubiHSM

4-), Yubico

L} YubiHsM
b SYSTEM
b -4 HKEY_USERS

] LV 71100

Computer\HKEY_LOCAL_MACHINE\SOF TWARE\Wow6432Node\Yubico\YubiHSM

Figure: Registry settings for the YubiHSM 2 KSP
1. Click Start > Run, type regedit in the Run dialog box, and click OK.
2. Select the registry subkey for the YubiHSM 64-bit KSP.

HKEY_LOCAL_MACHINE\SOFTWARE\Yubico\YubiHSM.

3. Change the URI to the IP address and port on which the YubiHSM 2 Connector is listening by editing the
following registry entry appropriately, for example:

“ConnectorURL”=http://127.0.0.1:12345

If the Connector is listening on IP address and port 192.168.100.252: 12345, for example, the ConnectorURL
value should be changed to:

“ConnectorURL”=http://192.168.100.252:12345

4. Enter the ID of the application authentication key (object ID 3 was used as an example in this guide; if you
used another object ID be sure to enter that). For our example, because the hexadecimal value of 9x00000003
resolves to 3 in the Windows Registry, change the entry to:

“AuthKeysetID”=3

146 Chapter 23. Configure the YubiHSM 2 Software on Windows

YubiHSM 2 User Guide

5. The application authentication key password is stored in the registry for the KSP to use when authenticating to
the device. Enter the new password that you created:

“AuthKeysetPassword”={password}

6. Select the registry subkey for the YubiHSM 32-bit KSP.

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Yubico\YubiHSM

7. Repeat steps 3-5 above.

8. To save your changes, exit the Windows Registry.

23.2 Configure the YubiHSM 2 Connector Service

The YubiHSM Connector service reads the configuration file yubihsm-connector-config.yaml. Depending on
your local setup, for instance if you are running multiple instances of the software on the same host, you may need to
edit this configuration file to ensure it is consistent with the Windows Registry, i.e., that the parameters and their values
are the same in the configuration file and in the Windows Registry.

On Windows, the yubihsmconnector.config.yaml file is located at C:\programdata\yubiHSM\
yubihsmconnector.yaml - you need administrator rights to modify the file.

23.2. Configure the YubiHSM 2 Connector Service 147

YubiHSM 2 User Guide

148 Chapter 23. Configure the YubiHSM 2 Software on Windows

CHAPTER
TWENTYFOUR

ALTERNATIVE SCENARIOS WITH CA ROOT KEY OR SUBORDINATE
CAS

This guide covers only basic setup and use of the YubiHSM 2 with ADCS. Some alternative scenarios include migrating
an existing CA root key to YubiHSM 2 or leveraging the YubiHSM 2 and YubiHSM Key Storage Provider in larger PKI
installations using multiple hosts to serve the CA including Subordinate CAs. Since conditions can vary a great deal
between organizations on these topics, the following contains some references that might be useful when deploying
YubiHSM 2 under such circumstances.

24.1 Migrating an Existing CA Root Key to YubiHSM 2

One potential circumstance when deploying YubiHSM 2 to secure ADCS is the fact that a CA root key already exists,
either in software or secured by hardware such as another Hardware Security Module. It is normally possible to migrate
the CA root key over to the YubiHSM 2, however depending on the pre-existing setup, the steps to take may vary.
For more information, see the information on the Yubico developers’ website at Move Software Keys to Key Storage
Provider.

24.2 Subordinate CAs

To improve security and scalability of your Certification Authority, consider installing the Root CA on a standalone
(offline) server, and use a Subordinate CA for all certificate signing. For additional information about implementing
advanced configurations, see the relevant Microsoft documentation, such as AD CS Step by Step Guide: Two Tier PKI
Hierarchy Deployment.

You will need assistance from the wrap key custodians to provide their respective wrap key shares, if applicable. In
the example we used in this guide, 2 out of the 3 shares must be available. When you create a backup, you create a
duplicate of the objects on your primary YubiHSM 2 onto a secondary device. The actual backup procedure consists
of steps as follows. These steps are described in detail in the following procedure.

1. Set up communication between the YubiHSM 2 tools and the device.
Start the configuration process and authenticate to the YubiHSM 2 device.
Identify the CA root key ID.

Export the CA root key.

Verify the key material under wrap.

Restore the key material onto a secondary (backup) device.

NS A »N

Verify the objects on the secondary device are correct.

149

YubiHSM 2 User Guide

Preconditions:
- Pre-configured secondary device
- YubiHSM 2 software installed on air-gapped computer

Export Verify Restore key
TN Identify CA *po

! presence of material onto Verify
K root key ID CA rook key key material secondary outcome
— under wrap

under wrap device

Postconditions:
- Key material on primary device restored onto a secondary device

Figure: Pre and Post Conditions

Since the CA root key was created on the device when setting up the CA, it currently only exists on the device. To back
it up using the YubiHSM Setup program, it must first be exported from the device using the wrap key that also sits on
the device alongside the application authentication key and the audit key. To export the CA root key under wrap using
the wrap key on the device:

1

. In your command line application, run YubiHSM Shell program. To start the YubiHSM Shell program:

a. Launch your command line application and navigate to the directory containing the YubiHSM Shell pro-
gram.

b. Type the following command and press Enter.

$ yubihsm-shell

To connect to the YubiHSM, at the yubihsm prompt, type connect and press Enter. A message verifying that
you have a successful connection is displayed.

To open a session with the YubiHSM 2, type session open 3 and press Enter.
Type in the password for the application authentication key.
You will receive a confirmation message that the session has been set up successfully.

If you already know the object ID of the root CA, you can skip this step. If you need to identify the root CA, you
can list the objects available.

a. To list the objects, type 1ist objects 0 (where 0 is the session number) and press Enter.

b. You will receive a list of the objects on the device that application authentication key with ID 3 has access
to, which will include the CA root key. Identify its ID.

To export the CA root key under wrap from the primary device to the local file system, in the YubiHSM Shell
program, run:

$ yubihsm> get wrapped 0 2 asymmetric-key {rootkeyID} rootkey.yhw

Verify that all the keys that were exported under wrap to file reside in the same directory as the YubiHSM Setup
program. The tool looks for files with the .yhw file extension in the current working directory and attempts to
read and import them into the device. The wrap key will be imported when you provide the wrap key shares to
the tool. Given the example object IDs in this guide, the following files should be present:

* 0x0003.yhw (Application authentication key under wrap)
e 0x0004.yhw (Audit key under wrap)
* rootkey.yhw (CA root key under wrap)

150

Chapter 24. Alternative Scenarios with CA Root Key or Subordinate CAs

YubiHSM 2 User Guide

10.

11.

12.

13.

To begin the process of restoring the data onto the secondary YubiHSM 2, if the primary YubiHSM 2 device is
inserted into your computer, remove it and insert the secondary device. Restoring a device must be performed
in an air-gapped environment to guarantee integrity.

In your command line application (where $ is the prompt), run YubiHSM Setup with the argument restore.
a. Launch your command line application, navigate to the directory containing the YubiHSM Setup program,

b. Type the following command, and press Enter.

$ yubihsm-setup restore

To start the YubiHSM Setup process, type the default authentication key password: password and press Enter.

A confirmation message is displayed that the default authentication key was used and that you successfully
have authenticated to the device: Using authentication key 0x0001

You will now start the restore procedure, which involves providing the number of wrap key shares required
by the privacy threshold defined when setting up the primary device.

When prompted, type the number of shares required by the privacy threshold and press Enter.
In this guide, we have specified that 2 shares are required to be rejoined. These must be present to proceed.

When prompted, for share number 1, the wrap key custodian holding the first share inputs this information and
presses Enter. A message is displayed that the share is received:

Received share 2-1.
< WWmTQj5PHGIQ4H9Y20uURm8m7 5QkD0eYzFz0X1VyMpAOeF3YKYZyAVAMOWY4GErc1VuAC

Continue to have each wrap key custodian enter the share information for each of the wrap key shares required to
rejoin the key share. After a sufficient number of wrap key shares have been inserted by the wrap key custodians,
a final message is displayed:

Stored wrap key with ID 0x0002 on the device

Note: The ID of the wrap key on the secondary device is the same as that for the primary device.

After the wrap key has been stored on the secondary device, the YubiHSM Setup program reads the files
containing the application authentication key, the CA root key, and, if applicable, the audit key that were
saved to file under wrap during the configuration of the primary device.

reading ./0x0004.yhw

Successfully imported object Authkey, with ID 0x0004
reading ./0x0003.yhw

Successfully imported object Authkey, with ID 0x0003

reading ./rootkey.yhw

Successfully imported object Asymmetric, with ID {rootkeyID}

If there are files containing wrapped objects with the . yhw file extension in this directory that were exported
with a different wrap key than the one reconstituted by the shares here, the setup tool attempts to also read
those but will fail gracefully and only restores the files it can decrypt.

The restore process finishes and the setup tool lets you know that the default, factory-installed authentica-
tion key has been deleted.

24.2. Subordinate CAs 151

YubiHSM 2 User Guide

Previous authentication key 0x0001 deleted
All done
Finally, the YubiHSM Setup application exits.

24.2.1 Confirming the Duplicated YubiHSM 2

You now have a duplicate of the device configured with the three key objects you created on the primary device earlier.
These are identical to the primary device that was configured earlier.

To confirm the duplicated YubiHSM 2:

1. In your command line application, run YubiHSM Shell program.

a. Launch your command line application and navigate to the directory containing the YubiHSM Shell pro-
gram.

b. Enter the following command and press Enter.

$ yubihsm-shell

To connect to the YubiHSM, at the yubihsm prompt, type connect and press Enter. A message verifying that
you have a successful connection is displayed.

To open a session with the YubiHSM 2, type session open 3 (where 3 is the ID for your application authen-
tication key) and press Enter.

Type in the password for the application authentication key. You will receive a confirmation message that the
session has been set up successfully.

. To list the objects, type 1ist objects 0 (or instead of ® some other session number that was given to you in

step 4) and press Enter. Verify that the secondary device now contains all of the key material that you intended
to restore.

Depending on the order in which the keys under wrap were imported, the order of the enumerated keys on the
secondary device may be different than on the primary device when using the list command. This has no practical
implementation and the object IDs are identical between the devices.

If you have verified that the secondary device now contains all of the key material that you intended to restore,
you should now remove the keys under wrap currently on file in the current working directory for the YubiHSM
Setup program.

152

Chapter 24. Alternative Scenarios with CA Root Key or Subordinate CAs

CHAPTER
TWENTYFIVE

BACKUP AND RESTORE KEY MATERIAL

We strongly recommend you make a backup copy of all production objects residing on your primary device, particularly
once the CA root key has been generated on the device. If there is an unforeseen hardware failure of the primary device,
having a backup ensures that you can resume operations quickly. In addition, this provides a means to backup all objects
contained on a device to reside in secure hardware offline.

The backup process will result in two identical YubiHSM 2 devices with the same number of objects, keys, labels, etc.

Note: Specific recommendations for governance of your critical key material is out of scope for this guide. Ensure
that you design and document these security procedures to fit the requirements of your organization. In many cases,
they are subject to audits.

25.1 Backup the YubiHSM 2 Overview

The backup of the primary YubiHSM 2 is a duplicate of all of the objects stored on the primary device, to be exported
under wrap and that are available using the application authentication key used.

The procedure described in this section is appropriate for testing and for smaller installations. For larger and/or more
complex installations such as:

* Those whose setup did not involve the YubiHSM Setup program
e When moving the YubiHSM 2 device from one server to another

Review the information at YubiHSM 2: Backup and Restore to determine whether the procedures set out there are more
appropriate for your situation.

This guide gives instructions for duplicating the following on the secondary device:
* Wrap key (previously created with ID 2),
* Application authentication key (ID 3),
* Audit key (ID 4) (if created previously)

The listed objects are exported under wrap.

The factory-installed authentication key (ID 1) on the secondary YubiHSM 2 device will be destroyed, just as it was on
the primary YubiHSM 2 device.

If you use actual wrap key custodians (instead of just doing a proof of concept), you will need the custodians to provide
their respective wrap key shares. In the example we used in this guide, 2 out of the 3 custodians/shares must be available.

To guarantee integrity, perform these operations in an air-gapped environment.

153

YubiHSM 2 User Guide

25.2 Backup and Restore the YubiHSM 2 Procedure Overview

The backup, see YubiHSM 2: Backup and Restore, of the primary YubiHSM 2 is a duplicate of all of the objects stored
on the primary device. The objects are exported under wrap onto the secondary device. The objects are available using
the same application authentication key used.

For instance, when following this guide, the wrap key (created with ID 2 previously), the application authentication key
(ID 3), the audit key (ID 4) (if created previously), and the CA root key will be duplicated onto the secondary device.
The factory-installed authentication key (ID 1) on the secondary device will be destroyed. You will need assistance
from the wrap key custodians to provide their respective wrap key shares, if applicable.

In the example we used in this guide, 2 out of the 3 shares must be available. When you create a backup, you create a
duplicate of the objects on your primary YubiHSM 2 onto a secondary device. The actual backup procedure consists
of steps as follows. These steps are described in detail in the following procedure.

The backup and restore procedure consists of the steps listed below the following diagram. The steps are explained in
detail in the section,:ref:hsm2-restore-keys-secondary-yubihsm2-device-label.

Preconditions:
Configured primary YubiHSM device
- Pre-configured secondary YubiHSM device inserted
- YubiHSM 2 software installed on air-gapped computer
- Set of keys from primary YubiHSM 2 exported to disk under wrap

Locate

-8 \ Run N . \ Restore ™\ . Restore ™\
O \ (or expodrt) - > setup restore > > Authenticate > > Wrapkey > > theother @
/ wrappe: P 4 /" script P % /D) /" keys(ID)

7 keys / / A

Postconditions:
Key material on primary YubiHSM device
restored onto a secondary device.

Figure: Flowchart illustrating backup and recovery of YubiHSM 2 keys

1. Locate the wrapped key material that was previously exported by the steps in Configuring the Primary YubiHSM
2 Device.

Set up communication between the YubiHSM 2 tools and the secondary (backup) YubiHSM 2 device.
Start the configuration process and authenticate to the secondary YubiHSM 2 device.

Identify the CA root key ID.

Export the CA root key.

Verify the key material under wrap.

Restore the key material onto a secondary (backup) YubiHSM 2 device.

® Nk » D

Verify the objects on the secondary device are correct.

154 Chapter 25. Backup and Restore Key Material

YubiHSM 2 User Guide

Preconditions:
- Pre-configured secondary device
- YubiHSM 2 software installed on air-gap computer

Verify presence Restore key
’ m mr WY c h mot key of key material onto vanfy
under wrap under wrap device

Posiconditions:
- Key material on primary device
restored onto a secondary device.

Figure: Pre and Post Conditions

Tip: For test purposes you can set the yubihsm-setup -d flag to keep the default authentication-key with the
administrative privileges. This allows you to delete keys on the YubiHSM 2 for test purposes only. For production
purposes however, the yubihsm-setup command must be executed without the -d flag to ensure that the factory
preset authentication key is properly deleted on the YubiHSM 2.

25.3 Restore Keys on the Secondary YubiHSM 2 Device

Since the CA root key was created on the device when setting up the CA, it currently only exists on the device. To back
it up using the YubiHSM Setup program, it must first be exported from the device using the wrap key that also sits on
the device alongside the application authentication key and the audit key. To export the CA root key under wrap using
the wrap key on the device:

1. In your command line application, run YubiHSM Shell program. To do this, if you haven’t already:

a. Launch your command line application and navigate to the directory containing the YubiHSM Shell pro-
gram.

b. Then run the following command and press Enter.

$ yubihsm-shell

2. To connect to the YubiHSM, at the yubihsm prompt, type connect and press Enter. A message verifying that
you have a successful connection is displayed.

3. To open a session with the YubiHSM 2, type session open 3 and press Enter.
4. Type in the password for the application authentication key.
You will receive a confirmation message that the session has been set up successfully.

5. If you already know the object ID of the root CA, you can skip this step. If you need to identify the root CA, you
can list the objects available.

a. To list the objects, type 1ist objects O (where 0 is the session number) and press Enter.

b. You will receive a list of the objects on the device that application authentication key with ID 3 has access
to, which will include the CA root key. Identify its ID.

6. To export the CA root key under wrap from the primary device to the local file system, in the YubiHSM Shell
program, run

25.3. Restore Keys on the Secondary YubiHSM 2 Device 155

YubiHSM 2 User Guide

10.

11.

yubihsm> get wrapped 0 2 seed=0 asymmetric-key {rootkeyID} rootkey.yhw

Where seed=0 does not export a privacy key seed. See EXPORT WRAPPED Command.

. Verify that all the keys, that were previously exported from the primary YubiHSM 2 under wrap, reside in the

same directory as the YubiHSM Setup program and that you have read access to that directory.

If the necessary keys are not yet all available on disk, export the keys under wrap. Run the following command:

yubihsm-setup dump

The YubiHSM Setup tool looks for files with the . yhw file extension in the current working directory and attempts
to read and import them into the YubiHSM 2 device. The wrap key itself will be imported when the wrap key
shares are provided to the tool. For example, the following files may be present:

* 0x0003-AuthenticationKey.yhw (Application authentication key under wrap)
* 0x0004-AuthenticationKey.yhw (Audit key under wrap)
* rootkey.yhw (CA root key under wrap)

e x427a-0Opaque.yhw (Certificate under wrap - not referenced by this guide in the configuration of the
primary HSM 2)

* x427a-AsymmetricKey.yhw (Private asymmetric key under wrap - not referenced by this guide in the
configuration of the primary HSM 2)

If the initial authentication key (by default available as ID 0x0001) has been deleted, the new authentication
application key is identified with the flag yubihsm-setup --authkey. For example:

$ yubihsm-setup --authkey 0x0003 dump

To begin the process of restoring the data onto the secondary YubiHSM 2, if the primary YubiHSM 2 device is
inserted into your computer, remove it and insert the secondary device.

Important: Restoring a device must be performed in an air-gapped environment in order to guarantee integrity.

In your command line application (where $ is the prompt), run YubiHSM Setup with the argument restore.
a. Change the directory containing the *.yhw files,

b. Run yubihsm-setup with the restore argument:

$ yubihsm-setup restore

To start the YubiHSM Setup process. Type the default authentication key password: password and press Enter.

A confirmation message confirms that the default authentication key was used and that you successfully
have authenticated to the YubiHSM 2 device:

Using authentication key 0x0001

When prompted, type the minimum number of wrap key shares required by the privacy threshold and press
Enter.

The require number of wrap key shares were defined when you set up the primary YubiHSM 2 device. In
this guide, we have specified that 2 shares are required to regenerate the key. These must be present in
order to proceed.

156

Chapter 25. Backup and Restore Key Material

YubiHSM 2 User Guide

12. When prompted for share number 1: Have the wrap key custodian holding the first share input this information
and press Enter. A message confirms that the share is received:

Received share 2-
< 1WWmTQj 5SPHGIQ4H9Y20uURmM8m7 5QkD0eYzFz0X1VyMpAOeF3YKYZyAVAMOWY4GErc1VuAC

13. Continue to have each wrap key custodian enter the share information for each of the wrap key shares required
to regenerate the wrap key. When the sufficient number of wrap key shares have been entered by the wrap key
custodians, a final message is displayed indicating that the wrap key from the primary YubiHSM 2 is now on the
secondary YubiHSM 2 as well:

Stored wrap key with ID 0x0002 on the device

Note: The ID of the wrap key on the secondary device is the same as the ID of the wrap key on the
primary device.

14. Review the output to verify Certificate Authority (CA) root key was also generated and exported along with a
private asymmetric key, both under wrap.

After the wrap key has been stored on the secondary YubiHSM 2 device, the YubiHSM Setup program
reads the files containing the application authentication key, the CA root key, and, if applicable, the audit
key that were saved to file under wrap during the configuration of the primary device.

The output below shows that in this case, the Certificate Authority (CA) root key was also generated and
exported along with a private asymmetric key, both under wrap.

reading ./0x0004.yhw

Successfully imported object Authkey, with ID 0x0004
reading ./0x0003.yhw

Successfully imported object Authkey, with ID 0x0003

reading ./0x427a-AsymmetricKey.yhw

Successfully imported object Asymmetric, with ID 0x427a
reading ./0x427a-Opaque.yhw

Successfully imported object Opaque, with ID 0x427a

reading ./rootkey.yhw

Successfully imported object Asymmetric, with ID {rootkeyID}

15. Review the output to note if there are files containing wrapped objects with the . yhw file extension in this directory
that were exported with a wrap key other than the one reconstituted by the shares here. The Setup tool attempts
to read those too, but fails gracefully. The Setup tool only restores the files it can decrypt.

16. Wait for the restore process to finish and the setup tool informs you that the default, factory-installed authentica-
tion key has been deleted.

Previous authentication key 0x0001 deleted
All done

The YubiHSM Setup application exits.

25.3. Restore Keys on the Secondary YubiHSM 2 Device 157

YubiHSM 2 User Guide

25.4 Verify the Duplicated YubiHSM 2

With the steps in the previous sections completed, you now have a secondary (duplicate) of the YubiHSM 2 device
configured with the three key objects you created on the primary YubiHSM 2 device earlier.

Confirm that the key objects are identical on both the secondary (configured in previous section) and the primary device
(configured earlier).

1.

At your command prompt, run the YubiHSM Shell program. To do this, if you haven’t already:

a. Launch your command line application and navigate to the directory containing the YubiHSM Shell pro-
gram.

b. Then run the following command and press Enter.

$ yubihsm-shell

Connect to the YubiHSM 2, at the yubihsm prompt, type connect and press Enter. A message confirms that
you have a successful connection.

Open a session with the YubiHSM 2, type session open 3 and press Enter.
where - 3 is the ID for your application authentication key.

Type the password for the application authentication key. A message confirms that the session has been set up
successfully.

List the objects, type 1ist objects 0 and press Enter.
where - 0 is session number that was given to you in step 4. Replace 8 with your session number, if it is different.

Review the output and verify that the secondary device now contains all of the key material that you intended to
restore.

Depending on the order in which the keys under wrap were imported, the order of the enumerated keys on the
secondary device may be different than on the primary device when using the list command. This has no practical
implication and the object IDs are identical between the devices.

After you verify that the secondary device contains all of the key material that you intended to restore, remove
the keys under wrap currently on file in the current working directory for the YubiHSM Setup program. The
computer’s hard drive can be erased.

158

Chapter 25. Backup and Restore Key Material

CHAPTER
TWENTYSIX

DEPLOYING YUBIHSM 2 FOR MICROSOFT HOST GUARDIAN
SERVICE (HGS) GUIDE

In a Microsoft Host Guardian Service (HGS) environment, the signing key and the encryption key must be protected
in hardware. The YubiHSM 2 protects these keys in hardware and thereby guards the HGS.

This guide is intended to help systems administrators deploy YubiHSM 2 for use with HGS in a Windows server
environment. The expected outcome is that the signing key and the encryption key are generated and stored securely
on a YubiHSM 2 and that a hardware-based backup copy of key materials has been produced.

These guidelines for deployment cover basic topics, so the instructions should be modified as required for your particular
environment. It is assumed that you are familiar with the concepts and processes for working with HSG. It is also
assumed that the installation is performed on a single HSG, but the concept can be extended to multiple servers.

Important: We recommend that you install and test the HGS installation and setup of the YubiHSM 2 in a test or lab
environment before deploying to production.

For guidance on enabling the HGS in a production environment, see Microsoft’s documentation on how to deploy a
guarded fabric and shielded virtual machines (VMs).

26.1 The Host Guardian Service — Guarded Fabric Concept

In order to raise the security level for virtualization, Microsoft Windows Server 2016 introduced the concept of Guarded
Fabric to increase the security of Hyper-V Virtual Machines (VMs). A guarded fabric is used to protect hosts from a
VM running malicious software and to protect VMs from a compromised host.

Shielded VM:

BitLacker encrypted
HGS
Attestation
Service:
Adlestation requestsesponses :
erifias Lhe
walidity of the
quarded host |

Kay requesisiresponses . HGS Hey .
Protection
Services:

Raleasas tha

Guarded Host: hoery 1o decrypd Hesgt

and slarl &
shisidad WM Guardian

Alestad hosl machine Sarvice
wilh TP

159

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms-top-node
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms-top-node
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms

YubiHSM 2 User Guide

Figure: Overview of a Guarded Fabric and Main Components
A guarded fabric is comprised of the following main components:

* Host Guardian Service (HGS) This is a Windows Server role that is typically installed on a cluster of physical
servers. The HGS in turn is composed of the Attestation Service and the Key Protection Service. The Attestation
Service verifies the Trusted Computing Group (TCG) logs of a guarded host and issues a health certificate if the
Guarded Host is attested by HGS. The HGS Key Protection Service is described in “HGS Key Protection Service”
below.

* Guarded Host This is an attested host machine, equipped with a Trusted Platform Module (TPM) that can run
shielded Hyper-V VMs. The guarded Hyper-V host must be attested by the HGS Attestation Service in order to
power on or migrate shielded VMs.

 Shielded VM This is a Hyper-V VM equipped with a virtual TPM, that is encrypted using BitLocker and can
run only on attested guarded hosts in a guarded fabric.

The guarded fabric components are described in Microsoft’s overview of guarded fabric and shielded VMs.

26.2 HGS Key Protection Service

The HGS Key Protection Service (KPS) is configured with at least two certificates (and corresponding private keys),
which are used for signing and encrypting the keys used to start up shielded VMs. The two mandatory certificates are:

¢ Encryption certificate: This certificate is used to encrypt and decrypt the key protector, which itself contains
the symmetric key that encrypts the virtual TPM of a shielded VM at rest. When a shielded VM is booting up
on an attested guarded host, the HGS KPS decrypts and releases its symmetric key, which is used by the guarded
host to decrypt the virtual TPM and the hard drive of a shielded VM.

* Signing certificate: This certificate is used to digitally sign the key protector to ensure its authenticity.
In addition to these mandatory certificates, the HGS KPS can also be configured with four optional certificates:

¢ Communications certificate

* Attestation signer certificate

e HTTPS (SSL/TLS) certificate

* Dump encryption certificate.

If those certificates are not configured, the Encryption certificate and Signing certificate will provide the necessary
operations.

The Encryption certificate and Signing certificate can either be self-signed or issued by a Certification Authority (CA).

The private keys corresponding to the certificates can be stored in an HSM or in software in PKCS #12 format. The
recommended option is to protect the keys in hardware in an HSM.

For more information on these topics, see Frequently Asked Questions About HGS Certificates in the Microsoft Tech
Community (requires community login).

160 Chapter 26. Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-setting-up-the-host-guardian-service-hgs
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-configure-hgs-with-authorized-hyper-v-hosts
https://learn.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-configuration-scenarios-for-shielded-vms-overview
https://learn.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms
https://techcommunity.microsoft.com/t5/Data-Center-Security/Frequently-Asked-Questions-About-HGS-Certificates/ba-p/372272

YubiHSM 2 User Guide

26.3 Scope of this Guide

The scope of this guide is to describe how to use the HGS KPS to generate the Encryption and Signing certificates/keys
using the YubiHSM. In this document, the Encryption and Signing certificates will be self-signed and created with
PowerShell scripts.

How to use CA to issue the certificates is out of scope for this guide.

How to deploy and configure the HGS Attestation Service, guarded hosts, shielded VMs, and additional features of a
guarded fabric are also out of scope for this guide.

For information on how to install and configure a complete guarded fabric, see Microsoft’s documentation on guarded
fabric deployment.

26.4 Prerequisites and Preparations

The audience of this document is an experienced systems administrator with a good understanding of Microsoft Hyper-
V virtualization management. In addition, it is helpful to be familiar with the terminology, software, and tools specific
to YubiHSM 2. As a primer for these terms, see the Glossary.

To complete the steps provided in this guide, complete the following prerequisites:

* Microsoft Windows Server 2016 or higher. The operating system should be installed in a secure computer net-
work. The system administrator must also have elevated system privileges.

* YubiHSM 2 software and tools for Windows downloaded from the Yubico YubiHSM 2 Release page and available
on the system to be used.

* Two (2) YubiHSM 2 devices, one for deployment and one for backup in hardware.

* Your organization’s policies may require key custodians to be available for the YubiHSM 2 deployment. For
more information about key custodians and the associated M of N key shares, see YubiHSM 2 SDK Tools And
Libraries in the YubiHSM 2 Windows Deployment Guide.

Configuration for this Integration For the integration described in this guide, the following hardware and software
configuration was used:

¢ Microsoft Windows Server 2016.
¢ Yubico YubiHSM v 2.1.2.
¢ Yubico YubiHSM v 2.1.2 software tools.

26.5 Basic Setup of YubiHSM 2 and Host Guardian Service

26.5.1 Install and Configuring YubiHSM 2

Install and configure the YubiHSM 2 and software using the instructions in the following sections in the YubiHSM 2
with Key Storage Provider for Windows Server.

1. Installing the YubiHSM 2 Tools and Software
2. Configuring the Primary YubiHSM 2 Device
3. Configure the YubiHSM 2 Software on Windows

26.3. Scope of this Guide 161

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms
https://developers.yubico.com/YubiHSM2/Releases/

YubiHSM 2 User Guide

Once these instructions have been followed, the YubiHSM 2 should be configured with the example we are using, one
domain with a wrap key (id 0x0002), an application authentication key (id 0x0003), and an audit key (id 0x0004).
The configuration of the YubiHSM 2 can be inspected by using the YubiHSM-Shell in a command prompt as shown
in the screenshot below.

. & Administraton Command Prompt - yubihsm-shell —connector hitp//192.168.1.. |L|£-

windowsh 4 yuhihan? -sdkshin > yuhi i

-~ seguence: B
1

:EquUeEnce: B
seguence = B

Figure: Example of the YubiHSM 2 Basic Configuration

26.5.2 Basic Deployment of HGS

To test the encryption and signing certificate/key generation for HGS Key Protection Services, configure a basic HGS
environment on a single server. For more information on how to install and configure a complete guarded fabric, see
Microsoft’s documentation on guarded fabric deployment.

To use shielded VMs, begin by adding the HGS role and configuring the HGS domain. In the following, we are showing
the PowerShell prompt as PS C:\users\your-username\.

1.

Add HGS Role.

To add the HGS role to a Windows Server, open a PowerShell console and enter the following command:

PS C:\users\your-username\ Install-WindowsFeature -Name HostGuardianServiceRole -
—IncludeManagementTools -Restart

For more information on this PowerShell command, see Microsoft’s documentation on how to Install HGS.
Install Host Guardian Server on Bastion Host.

To configure the Active Directory (AD) forest for HGS, configure the HGS service, and lock down the Windows
Server to a bastion host, open a PowerShell console and enter the following command:

PS C:\users\your-username\ = ConvertTo-SecureString -AsPlainText
—<password>' -Force

PS C:\users\your-username\ Install-HgsServer -HgsDomainName 'bastion.local' -
—.SafeModeAdministratorPassword -Restart

For more information on this PowerShell command, see Microsoft’s documentation on how to Install HGS.

162

Chapter 26. Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-and-shielded-vms
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-choose-where-to-install-hgs
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-choose-where-to-install-hgs

YubiHSM 2 User Guide

26.6 Create Signing and Encryption Keys for HGS

26.6.1 Generate Signing and Encryption Keys and Certificates
Generate the signing and encryption keys and certificates for HGS by using the PowerShell cmdlet
New-SelfSignedCertificate. In this guide, self-signed certificates will be used for HGS.
The HGS signing and encryption certificates must adhere to the following specifications:

* Crypto provider: YubiHSM Key Storage Provider.

* Key algorithm: RSA

e Minimum key size: 2048 bits

* Signature algorithm: SHA256

» Key usage: Digital signature and data encipherment

» Enhanced key usage: Server authentication

* Subject name: Recommended: your company’s name or web address
Do the following to create the self-signed HGS certificates:

1. Create the Self-signed HGS Signing Certificate and Key.

Start a command prompt with administrator rights and type the command PowerShell. In the PowerShell
command prompt, run the following cmdlet:

PS New-SelfSignedCertificate -Provider "YubiHSM Key Storage Provider" -Subject
—"CN=HGS Signing Certificate" -KeyExportPolicy NonExportable -KeyUsage.
—.DigitalSignature,DataEncipherment -TextExtension @("2.5.29.37={text}1.3.6.1.5.5.7.
—3.1") -KeyAlgorithm RSA -KeyLength 2048 -CertStoreLocation "Cert:\LocalMachine\My

—'" -Verbose

2. Create the Self-signed HGS Encryption Certificate and Key.

In the PowerShell command prompt, run the following cmdlet:

PS C:\users\your-username\ New-SelfSignedCertificate -Provider "YubiHSM Key Storage.
—Provider" -Subject "CN=HGS Encryption Certificate" -KeyExportPolicy NonExportable..
—.-KeyUsage DigitalSignature,DataEncipherment -TextExtension @("2.5.29.37={text}1.3.
—6.1.5.5.7.3.1") -KeyAlgorithm RSA -KeyLength 2048 "Cert:\LocalMachine\My" -Verbose

26.6. Create Signing and Encryption Keys for HGS 163

YubiHSM 2 User Guide

Figure: Example of PowerShell cmdlet to Create Self-Signed Certificates

Make a note of the thumbprints of the self-signed certificates. In this example, the signing certificate
thumbprint is A576F936B6F044586123FDE8CB3C7BDDA1431DA8 and the encryption certificate thumbprint is
5701A22B99CO29FCFB578B9191AEFA8AF7454188.

3. Verify Generation and Storage of HGS Key-pairs in YubiHSM 2.

Verify that the HGS key-pairs have been properly generated and stored in YubiHSM 2 by starting a command
prompt and using YubiHSM-Shell to list the objects, as shown in the figure below.

W A g g Prmmm gt . 1 LT LFE g

Figure: Example of HGS Keys in YubiHSM-Shell
4. Verify Storage of HGS Certificates in Microsoft Certificate Store.

Verify that corresponding HGS certificates have been stored in Microsoft certificate store. Launch the Microsoft
Management Console (MMC) by going to the command line and typing MMC. exe.

a. In MMC, select File > Add/remove Snap-in.

164 Chapter 26. Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide

YubiHSM 2 User Guide

b. In the Add or Remove Snap-ins window, select the option Certificates > Computer Account > Local
Computer.

c. In the Certificates (Local Computer) console, expand the folders Personal > Certificates, and verify that
the self-signed HGS signing and encryption certificates appear.

A i el i il et il i

Ferama T 5 —— b aw

Figure: Example of HGS Certificates in Microsoft Certificate Store

For more information on how to generate HGS signing and encryption keys and certificates, see Microsoft’s
documentation on HGS certificate management.

26.6.2 Initialize HGS with Signing and Encryption Keys and Certificates

Once the HGS signing and encryption keys and certificates have been generated, use them to initialize HGS.

Create the self-signed HGS certificates by starting a command prompt with administrator rights and typing the com-
mand PowerShell. In the PowerShell command prompt, run the following cmdlet to initialize HGS with the signing
and encryption certificates.

Note: The parameters SigningCertificateThumbprint and EncryptionCertificateThumbprint should be
set to the output values from the PowerShell cmdlet New-SelfSignedCertificate as described in the previous
section.

PS C:\users\your-username\ Initialize-HgsServer -HgsServiceName 'MyHgsService' -
—.SigningCertificateThumbprint '<SigningCertificateThumbprint>"' -
—EncryptionCertificateThumbprint '<EncryptionCertificateThumbprint>"'

26.6. Create Signing and Encryption Keys for HGS 165

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-obtain-certs
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-obtain-certs

YubiHSM 2 User Guide

Figure: Example of PowerShell cmdlet to Initialize HGS with the Certificates

For more information on how to initialize HGS with the signing and encryption certificates, see Microsoft’s documen-
tation on HGS initialization.

166 Chapter 26. Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide

https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-initialize-hgs-key-mode-default
https://docs.microsoft.com/en-us/windows-server/security/guarded-fabric-shielded-vm/guarded-fabric-initialize-hgs-key-mode-default

CHAPTER
TWENTYSEVEN

YUBIHSM 2 FOR MICROSOFT SQL SERVER DEPLOYMENT GUIDE

27.1 YubiHSM 2 for Microsoft SQL Server Guide

In a Microsoft SQL Server environment, the Column Master Key (CMK) must be protected in hardware. The YubiHSM
2 protects the CMK in hardware and guards the Microsoft SQL Server database encryption services.

This guide is intended to help systems administrators deploy YubiHSM 2 for use with Microsoft SQL Server in a
Windows server environment. The expected outcome is that the Column Master Key (CMK) is created securely on a
YubiHSM 2 and that a hardware-based backup copy of key materials has been produced.

These guidelines for deployment cover basic topics, so the instructions should be modified as required for your specific
environment. It is assumed that you are familiar with the concepts and processes for working with Microsoft SQL
Server. It is also assumed that the installation is performed on a single Microsoft SQL Server database, but the concept
can be extended to more servers and databases.

Important: Before deploying to production, we recommend that you install and test the Microsoft SQL Server instal-
lation and setup of the YubiHSM 2 in a test or lab environment.

For guidance on enabling the Microsoft SQL Server feature Always Encrypted in a production environment, see the
Microsoft SQL Docs for Always Encrypted.

27.2 Introduction to Always Encrypted

Introduced in 2016, Microsoft SQL Server’s Always Encrypted feature enables the encryption of selected columns in
a database.

Note: The YubiHSM 2 requires Microsoft SQL Server 2017 and Microsoft SQL Server Management Studio (SSMS)
2018.

The Always Encrypted encryption mechanisms rely upon two cryptographic keys, described in detail in the Microsoft
SQL Docs, Overview of Key Management for Always Encrypted. In brief:

¢ The Column Encryption Key (CEK) is a symmetric key used for encrypting the contents of a selected database
column.

e The Column Master Key (CMK) is an asymmetric key that is used for protecting the encryption key. The
CMK for Always Encrypted can be protected in a local key store, which is in the scope of this document, or in a
centralized key store, which is not in scope.

167

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted?view=sql-server-2017

YubiHSM 2 User Guide

A CMK can be stored in a local key store that supports Microsoft’s Cryptography Next Generation (CNG) API. To
protect the CMK in hardware, a hardware security module (HSM) should be used. In this scenario, Always Encrypted
accesses the HSM through the CNG API by using a key storage provider (KSP).

To protect the CMK in hardware, the YubiHSM 2 can be deployed as the local key store. Microsoft’s Always Encrypted
accesses the YubiHSM 2 through the KSP that is provided with the YubiHSM software tools. With this setup, the
Microsoft SQL Server Management Studio (SSMS) can be used to manage the CMK in the YubiHSM 2 device. This
deployment guide describes two ways to generate the CMK and CEK in YubiHSM 2:

* By using the SSMS wizard, as described in Use SSMS to Generate the CMK and CEK.
* By running a PowerShell script, as described in Use PowerShell Script to Generate the CMK and CEK .

27.3 Prerequisites and Preparations

The audience of this document is an experienced system administrator with a good understanding of Microsoft SQL
Server management. In addition, it is helpful to be familiar with the terminology, software, and tools specific to
YubiHSM 2. As a primer for these terms, see the Glossary.

To follow the steps provided in this guide, the complete the following prerequisites:

* Microsoft Windows Server 2022 or higher, with Microsoft .NET Framework 4.8 or higher. The operating system
should be installed in a secure computer network. The system administrator must also have elevated system
privileges.

* Access to Microsoft SQL Server 2019 with SQL Server Management Studio (SSMS) 2018 or higher.

* YubiHSM 2 software and tools for Windows downloaded from the Yubico YubiHSM 2 Release page and available
on the system to be used.

Note: The 32-bit version of the YubiHSM KSP DLL is needed for use with SSMS.

* Two (2) YubiHSM 2 devices, one for deployment and one for backup in hardware.

* Your organization policies may require key custodians to be available for the YubiHSM 2 deployment. For more
information about key custodians and the associated M of N key shares, see Key Splitting and Key Custodians.

27.3.1 Configuration for this Integration

For the integration described in this guide, the following hardware and software configuration was used:
* Microsoft Windows Server 2022.
* Microsoft .NET Framework 4.8.
¢ Microsoft SQL Server 2019.
* Microsoft SQL Server Management Studio (SSMS) 2018.
* Yubico YubiHSM v 2.1.2.

* Yubico YubiHSM software tools v 2021.12c¢. In particular, the 32-bit YubiHSM KSP DLL is needed for use with
SSMS (which is a 32-bit application).

168 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

https://developers.yubico.com/YubiHSM2/Releases
https://www.yubico.com/products/yubihsm/

YubiHSM 2 User Guide

27.4 Basic Setup of YubiHSM 2 and SQL Server

27.4.1 Installing and Configuring YubiHSM 2

Install and configure the YubiHSM 2 device and software using the instructions in the following sections in the Yu-
biHSM 2 with Key Storage Provider for Windows Server—Configure YubiHSM 2 Key Storage Provider for Microsoft
Windows Server, see Key Splitting and Key Custodians.

* Installing the YubiHSM 2 Tools and Software
* Configuring the Primary YubiHSM 2 Device
* Configure the YubiHSM 2 Software on Windows

When these instructions have been completed, the YubiHSM 2 should be configured with — for example — one domain
with a wrap key (id 0x0002), an application auth key (id 0x0003), and an audit key (id 0x0004). The configuration
of the YubiHSM 2 can be inspected by using the YubiHSM-Shell in a command prompt as shown in the screenshot
below.

@8 Administrator: Command Prompt - yubihsm-shell --connector http://192.168.1... I;Ii-

Cz“MyFiles“Dowvnloads“YuhiHSM: i hs sdk—-2 windows64\yubihsn2-sdk\bin>yubih
or http:irss £ A 259 ¢

= get up to run every 15 sec
;ion open 3 password
on 1
abj
AxABAl . = ic i SEQuUence :
D BxABA2, type:
— H'p‘HHH:I, Cype:

segquence =

Figure: Example of the YubiHSM 2 basic configuration

27.4.2 Creating a Test Database

Create a test database that will be used for the Always Encrypted deployment with YubiHSM 2. A test database can be
downloaded from Microsoft’s official repository at Wide World Importers sample database v1.0 If you already have a
Microsoft SQL Server database installed, you can skip ahead to Configure SSMS for Database Encryption.

Note: At least one row with values needs to be inserted into the database table before the columns are encrypted (see
the example of a test database below).

1. Create a test database.

a. Launch Microsoft SQL Server Management Studio (SSMS) 2018.

27.4. Basic Setup of YubiHSM 2 and SQL Server 169

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

YubiHSM 2 User Guide

b. Right-click on the Databases icon.

c. Select New Database....
d. Enter an appropriate name for the database.

In this guide, a test database named “Sales3” is used for the tests with Always Encrypted in conjunction
with YubiHSM 2.

7 U Ful et inciaing

[Catabeon files:

Legca Mame= Fe= Type Fe=goup il S ME] _h.mw#'.-"hlm:c
Saleal ROWS PRIMARY i : By B4 MB, Unlmied '—| L

Smeedly LDG ByGAMD, Uniried [¢

Sanr;
WIK-281INRIKAME

Cannecton
WYDO AN Admiresbrator
¥ ew connection proadios

Figure: Example of test database
2. Create table:
a. Expand Databases > Sales3 > Tables.
b. Right-click on Tables and select Create new table.
c. Add some columns, for example “Name”, “Address”, “ZipCode”, “City”, “Country”.
d. Save the table and give it a name - “Table_Customers” for example.

170 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

W WA ZBUMPIEAMESales3 - dbo Talle 1WIN-28 UNPIEAMG Sales3 - dbo Table Customers - Micisos 501 Seres Management Studio Ghdminitrator)
Fie B s Prgen TibkDeigee Toh i b

00|t] B SRRER(LEFH|T T H P JmeEm. i e e EE DEE.
¥ % Lmcuin B 1 | =,
Cossscte § "N LT i om Barer atia Twgie Alrm by
= I I TR (O T rees 10D - b DO N e] e L] Ca
Nt A — =]
Suriem Cwaba e TipConti achart B =
Db Snaprhos i
N Cily mvchuan 1 B8 #
b [Counley mchar(1 -
. Mrmage
" S by
Sty
S il 1
Faghianos
- s T High Fasile bl
- el
atian wreco Lrklog
Sapym fagerd [Agard B rysbied)
(=] 2k rotas
Loty
e Bl e,
Dt Type wib
el Wl 0 Bl
Laragth
Hrreral
A 1]

Figure: Example of test table
3. Add one or more rows to the table:
a. Expand Databases > Sales3.
b. Right-click on Table and selecting New > Query....

c. Use the SQL Query window to insert rows into the database table, for example, with the SQL query shown
below.

27.4. Basic Setup of YubiHSM 2 and SQL Server 171

YubiHSM 2 User Guide

o SO Chery ¥osgl - WINE- S0 INPTEARME Sale s] INTYDHORAIR Acimini shiatar (56307 - Micromi® SOL Server Management Studio [fdminairalcn
Bl Gt Wew ey Paopst Teak Wedow bep

0-0 |00 -LMP| Bty AZSRB | ANIH|P B|» L F LR
| aea kb s JESE|EFER ABS| Ve SR
oot 7 CCEUTETEETET oo i
Cerrase B & o =IINSERT INTO Table _Customers [Mame, Address, Zipfode, City, Country)

= WR-TRURE IR IS P e 110025 - RVIRIVIARRS VBLUES ('lohn Ooe', 'Street 1°, "12345°, ‘Dublin’, “"Ireland’) ,|

I8 Pl

Figure: Example of SQL query to insert values into the table

27.5 Use SSMS to Generate the CMK and CEK

The Microsoft SQL Server Management Studio (SSMS) provides tools for manual creation of the CMK and CEK.
However, using a PowerShell script (see Use PowerShell Script to Generate the CMK and CEK) results in a uniform
configuration and ensure no options are missed. Note that all the examples and screenshots in this document are based
on different key names being used for the SSMS wizard and the PowerShell script.

27.5.1 Generate the CMK

1. To generate the CMK for a database, create and save the following PowerShell script to generate Always En-
crypted Key. Save this script as AlwaysEncryptedKey-PS.ps1.

$cngProviderName = "YubiHSM Key Storage Provider"

$cngAlgorithmName = "RSA"

$cngKeySize = 2048 # Recommended key size for column master keys

$cngKeyName = "AlwaysEncryptedKey-PS" # Name identifying your key in the KSP

$cngProvider = New-Object System.Security.Cryptography.CngProvider(

—$cngProviderName)

$cngKeyParams = New-Object System.Security.Cryptography.

—.CngKeyCreationParameters

$cngKeyParams.provider = $cngProvider

$cngKeyParams.KeyCreationOptions = [System.Security.Cryptography.

—CngKeyCreationOptions]: :OverwriteExistingKey

$keySizeProperty = New-Object System.Security.Cryptography.CngProperty(
(continues on next page)

172 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

(continued from previous page)
—"Length", [System.BitConverter]: :GetBytes($cngKeySize), [System.Security.
—Cryptography.CngPropertyOptions]: :None) ;
$cngKeyParams.Parameters.Add ($keySizeProperty)
$cngAlgorithm = New-Object System.Security.Cryptography.CngAlgorithm (
—$cngAlgorithmName)
$cngkey = [System.Security.Cryptography.CngKey]: :Create($cngAlgorithm,
—$cngKeyName, $cngKeyParams)

2. Run the AlwaysEncryptedKey-PS.ps script from a PowerShell Window with elevated/administrator permis-
sions.

3. Once completed, verify the Network Location is set to Private or Domain. To do so:

* View the current Profile assigned to the Network Connection by using the command.

Get-NetConnectionProfile.

« If the Profile is set to Public change it to Private or Domain so that SQL can communicate properly with
the YubiHSM.

* To change it, use the command.

Set-NetConnectionProfile -InterfaceAlias Ethernetl -NetworkCategory "Private"

27.6 Validate Generation of the CMK

The presence of the asymmetric CMK in the YubiHSM 2 can also be validated by running the following sequence of
YubiHSM-Shell commands in a command prompt.

$yubihsm> connect

$yubihsm> session open <slot-ID> <password>

$yubihsm> list objects <session-ID>

$yubihsm> get objectinfo <session-ID> <key-ID> asymmetric-key

Example output from the YubiHSM-Shell commands is shown in the screenshot below.

27.6. Validate Generation of the CMK 173

YubiHSM 2 User Guide

& Administrator: Command Prompt - yubihsm-shell --connector http://192.168.1... |;|i-

AN | Pl]r-\Dﬂunlnuﬂ“.?uhlﬂk ubihsm2—-sdk-2.0.8—windowsb4syubihsmZ2—sdk\bin2>yubih
3 actor http: 92.168.180.252:12345
sm?> connect
ion kPP]H]]tJP set up to run every 15 seconds
sion open 3 password

authentication—key, sequence:
type: wrap—key, sequen a
type: authenti 0 (BY, SEquence:

type: j k equente:
’] @
; 1 as mmL[tLL key
type: asymnmetric I alqntifhm rsa2b4 label: “"Always—E
qth 896, c ins: guence: B, or T rated, capabilit
crypt—o tdecrypt < pnrta ble—under—wrap:siyg .
yubihsmn>

Figure: New Column Master Key listed in YubiHSM

27.6.1 Assign the CMK to a Database

1. To assign the CMK for a database.
a. Launch SSMS.
b. Expand Databases > Database-Name > Security > Always Encrypted Keys > Column Master Key.

We use the example shown below, expanding the tree Databases > Sales3 > Security > Always Encrypted Keys
> Column Master Key.

174 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

Object Explorer v 0 X
Connect = ? "* C; e
n Tables ~
- Views
% External Resources
. Synonyms
* Pragrammability
Query Store
- Service Broker
* Storage
Security
¥ Users
3 Roles
] Schemas
¥ Asymmetric Keys
¥l Certificates
¥ Symmetric Keys
=| Always Encrypted Keys
= Column Master Keys
»0 CMEK-YubiHSM-55MS
Column Encryption Keys
=¥ CEK-YubiHSM-55M5
| Database Audit Specifications
= Secunity Policies
3 Security
£ Server Objects
= Replication
= PolyBase
3] Always On High Availability "’

Figure: Assigning the CMK

2. Right-click on Column Master Keys, and select New Column Master Key... in the New Column Master

Key window, enter the following values:

* In the Name text field, enter an appropriate name for the CMK, for example, “CMK-YubiHSM-SSMS”.

¢ In the Key Store drop-down list, select Key Storage Provider (CNG).

¢ In the Select a provider drop-down list, select YubiHSM Key Storage Provider.

¢ In the bottom field, select AlwaysEncryptedKey-PS.

27.6. Validate Generation of the CMK

175

YubiHSM 2 User Guide

27.6.2 Generate the CEK

The next task is to generate the CEK for a database.
1. Generate the CEK.
a. Launch SSMS.
b. Expand Databases > Database-Name > Security > Always Encrypted Keys > Column Encryption Key.

In our example, expand the tree Databases > Sales3 > Security >Always Encrypted Keys > Column Encryp-
tion Key, which is illustrated in the screenshot below.

H W JRTINAICALIN Sales 3 dbc Tabde TR 281 BIPKAME Saiou] - dba Table Cudomen, . Mirnacd® 50 Sorsp Mansgoment Shedo [Sdminsiiatim]
bim o8 Yem PBemi Tobij Donajimd T Avadow g

G- - SHF Aoy F222 8 B 7 R AED-,

v
I RLRNK

Figure: Column Encryption Keys in SSMS
2. Right-click Column Encryption Keys and select New Column Encryption Key....
3. In the New Encryption Master Key window, enter the following values:
a. In the Name text field, enter an appropriate name for the CEK, for example CEK-YubiHSM-SSMS.

b. Inthe Column master key drop-down list, select the CMK that was generated on the YubiHSM, for example
CMK-YubiHSM-SSNS.

176 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

Hame: [cERTubiHSM 55MS]

Cobure master kiy: | CHKCYubsHSM-SSHS

Column encryplion keys protec] your dala, and column master keys probact your colurmn
ercryption keys. This lets you manage fewer keys

To credte 3 new column master key_ues the "New Column Masler ey pags.

Server:
WIREZEINF IKAME

‘Connsction:
MY DOMAIN Administraler
¥ ey connechion pmpotes

Figure: Create new Column Encryption Key with SSMS
4. Generate and verify the CEK.
a. Press OK. To verify the success of the operation.

b. Check to see whether the CEK is listed under Always Encrypted Keys in SSMS.

27.6. Validate Generation of the CMK 177

YubiHSM 2 User Guide

o W ZRLNFILANS Salesd - dbo |able TWIN-2BUNFIEANE Saiesd - dbo | abie_Ussiomers - Mipasoit 500 Server Mansgement Shuo (hdmssiralon
Ll L

B s a-E Ml Rt AHDAS & =W -lEAREs & .
* P .
Oy g T
T RS e
I P RS It RN A L “ -
e , =
' :.‘II l'l..:-ﬂl 1 =]
i e -
5 I b b Conty "
o

Figure: Column Master Key and Column Encryption Key in SSMS

27.7 Use PowerShell Script to Generate the CMK and CEK

Instead of using SSMS to generate the CMK and CEK (as described in the foregoing section, Use SSMS to Generate
the CMK and CEK), another option is to use PowerShell to generate the CMK and CEK. Microsoft has published a
PowerShell script that can be used to generate the CMK in an HSM. The following instructions list the activities in the
script, then describe how to modify that PowerShell script to generate the CMK in the YubiHSM 2 by calling its KSP.

27.7.1 Create a CMK in the YubiHSM 2 with CNG Provider (KSP)

$cngProviderName = "YubiHSM Key Storage Provider"

$cngAlgorithmName = "RSA"

$cngKeySize = 2048 # Recommended key size for column master keys

$cngKeyName = "AlwaysEncryptedKey-PS" # Name identifying your key in the KSP
$cngProvider = New-Object System.Security.Cryptography.CngProvider ($cngProviderName)
$cngKeyParams = New-Object System.Security.Cryptography.CngKeyCreationParameters
$cngKeyParams.provider = $cngProvider

$cngKeyParams.KeyCreationOptions = System.Security.Cryptography.CngKeyCreationOptions]::.
—OverwriteExistingKey

$keySizeProperty = New-Object System.Security.Cryptography.CngProperty("Length",[System.
—.BitConverter]::GetBytes($cngKeySize), [System.Security.Cryptography.
—CngPropertyOptions]: :None) ;

$cngKeyParams.Parameters.Add ($keySizeProperty)

$cngAlgorithm = New-Object System.Security.Cryptography.CngAlgorithm($cngAlgorithmName)
$cngkey = [System.Security.Cryptography.CngKey]: :Create($cngAlgorithm, $cngkeyName,

< $cngKeyParams)

178 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-keys-using-powershell?view=sql-server-2017

YubiHSM 2 User Guide

27.7.2 Import SQL Server Module

Import-Module "SqglServer"

27.7.3 Connect to your Database

$serverName = "<server name>"
$databaseName = "<database name>"
$connStr = "Server = " + $serverName + "; Database = " + $databaseName + ";Integrated.

—Security = True"

$connection = New-Object Microsoft.SqlServer.Management.Common.ServerConnection
$connection.ConnectionString = $connStr

$connection.Connect()

$server = New-Object Microsoft.SqlServer.Management.Smo.Server ($connection)
$database = $server.Databases[$databaseName]

27.7.4 Create SQL CMK Settings Object for your CMK

$cmkSettings = New-SglCngColumnMasterKeySettings -CngProviderName
$cngProviderName -KeyName $cngKeyName

27.7.5 Create CMK Metadata in Database

$cmkName = "CMK-YubiHSM-PS"
New-SqglColumnMasterKey -Name $cmkName -InputObject $database -ColumnMasterKeySettings
—$cmkSettings -Verbose

27.7.6 Generate CEK, Encrypt with CMK, and Create CEK Metadata in Database

$cekName = "CEK-YubiHSM-PS"
New-SqglColumnEncryptionKey -Name $cekName -InputObject $database -ColumnMasterKeyName
- $cmkName -Verbose

27.7.7 Customize the Script

1. To customize this script, change the placeholders server name and database name to the actual values of the
Microsoft SQL Server name and the database used.

For the test database used in this example, the database name is set to Sales3, while the server name should
be set to the name of your Windows server.

2. Save the PowerShell script file in a folder with an appropriate name, for example
CreateColumnMasterAndEncryptionKeys-YubiHSM.psl.

3. Execute the script.

a. Launch a command prompt with administrator privileges

27.7. Use PowerShell Script to Generate the CMK and CEK 179

YubiHSM 2 User Guide

b. Enter the PowerShell mode by typing PowerShell.
c. Navigate to the directory where the PowerShell script is located.

d. Execute the script:

PS> .\CreateColumnMasterAndEncryptionKeys-YubiHSM.psl

The PowerShell script generates the CMK and the CEK and displays the output from these operations. Output
from the script given in Create a CMK in the YubiHSM 2 with CNG Provider (KSP) is shown in the screenshot
below.

= Administrator; Command Prompt - powershell | = o

atelo Lins

|
HEY [CMK

=g]
RYPTION KEY [CEH—YubiHSM-PE]

[CHE-YubiHEN-PR 1,

Figure: PowerShell script to create Column Master Key and Column Encryption Key

180 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

27.7.8 Validate Generation of the CMK and the CEK

1. After executing the PowerShell script.
a. Switch back to SSMS.

b. Expand the objects Databases > Database-Name > Security > Column Master Key and Databases >
Database-Name > Security > Column Encryption Key.

c. Right-click each object and select the Refresh option.

The CMK and CEK that were generated by the PowerShell script appear in SSMS as CMK-YubiHSM-PS and
CEK-YubiHSM-PS respectively.

W WIH. 2B IRPIGAME Sates3 - dba Table TWIN. 2E1BNPECAMG Sales? - dba Table Casomies - Marosolt S0 Sensr Managoment Shudia [Adminisiratnr
B [Yew Pl L Deigie Josk edew B

00|80 -2 B By BR22S || | Esan, =.
LI T pr——— ==

L S THrA ke

L
THEEE

Figure: Refreshed Column Master Keys and Column Encryption Keys in SSMS

2. Verify the presence of the asymmetric CMK in the YubiHSM 2 by running the following sequence of YubiHSM-
Shell commands in a command prompt.

$yubihsm> connect

$yubihsm> session open <slot-ID> <password>

$yubihsm> list objects <session-ID>

$yubihsm> get objectinfo <session-ID> <key-ID> asymmetric-key

Example output for the YubiHSM-Shell commands is shown in the screenshot below.

27.7. Use PowerShell Script to Generate the CMK and CEK 181

YubiHSM 2 User Guide

&8 Administrator: Command Prompt - yubihsm-shell --connector http://192.168.1... ‘;

C:sMyFilessDownloadss\YubiHSMs\yubihsm2-sdk-2.0.0-windowsb64\yubihsm2-sdk\bi
11 ——connector http:-/-192.168.1808.252:12345%

set up to run every 15 seconds

yubihsm?> open 1 password
Created s
yubihsm> 1
Found &6 object
id: BxB801, tw authentication—key, segquence: @
i HBxB8B2, t ap—key, sequence: @

Bx0083, tyy authentication—key, uence: @

Bx8084, type: authentication—-key, sequence: 8

Bxa%?df, type: asymmetric-key,
id: Bxfa%96, type: asymmetric-kewy.
ubihsm> get objectinfo 1 Bxfa%6 a
Bxfa%6,. type: asymr ey, lgorithm: rsaZ2@48,. label: "AlwaysEncry

896 . 1. sequence: B, origin: generated, capabilit

xxportable-under-uwrap:sign-pkcs:sign-pss

Figure: Column Master Keys in YubiHSM 2

27.8 Encrypt Database Columns

Database columns can be encrypted with PowerShell- or SSMS-generated keys.

27.8.1 Encrypt Database Column with PowerShell-Generated Keys
1. To encrypt a database column, expand the database’s columns: Databases > Database-Name > Tables > Table-
Name > Columns.

Our example expands the tree Databases > Sales3 > Tables > dbo.Table_Customers > Columns, as shown in
the screenshot below.

182 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

e WIN2E BPILAMG Satesd - b Tabke TIWII. 251 PIPRGAMESales3 - dbo Tabie: Cistornats - Mirrosoft SO Seraer Managiemant Shidks [Administraso
B B¢ Nww Rot Lok Deepem Dok Bk Hep

G0 |80 M| Pt BRI 20 B S mAeE- |« fa=0nE,
L NG bhpols B v A E | FEE ARD ET I
=pe e
Commis § F 0 T G S e bgrm Dotn Ty s bagh
I T AL (MO S | LA S - RTDORAAR = Ma=s Fol o
o W Dtk fre. P]
N Epcan 2
o Db Supen .
i g S (hy L
) S ¥ | Country o
= el
)
Coumn bt
Eus
e
Raarea cuminy
PR, -
it Ty e
Esfinit ' shi o Wb
pa—. L]
P -
= i Wama e
= 8 Inisgrmor, Sessem Conloge
"

Figure: Expanded columns to be encrypted

2. Right-click the column to be encrypted and select Encrypt Column....

In our example, right-click the table Name and select Encrypt Column.... The Introduction window in the

SSMS Always Encrypted wizard appears:

m Introsduction
CEETE— @

Column Sercaon
Macter Kry Cenfigurstan
B Srttiy Abmsyi Erergpted i deiigned 1o pastect seasithve inflesmation - duch as oredit ieed numbert - ibseed i
) * A0Y Tonver Satsbarar 8 enshles cheabste encryps dats insde clhient spphestion: and never seveal ghe
fumran, encrpprios beys wo 501 Serer.
Feaulks

-

' o '

[1

i i

I - 1

1 A W

1

i 2= i

1 1

' o v

- 1

| r| y

1 |

| |

! '

LssssssssSssssssssssssss i

L[] Do not show this page again.

[i Cancedl
|

Figure: Always Encrypted wizard: Introduction

27.8. Encrypt Database Columns

183

YubiHSM 2 User Guide

3. Click Next. The Column Selection window of the Always Encrypted wizard appears:

o ion @ Help

Search cubame name |
Master Key Conligsation
Fagm Sarttings: [dppiy e kg o all checked columes CEK-YubiHEA- 55
Summiry Ercryptien Tree 'L Ercrypbon oy L
Pesults Fiare Skatw Ercryption Typs Encrypkcn iy

= dbo.Tabke_ Cu
2 e N - B
] Shew affected cobamrs ondy
: -) -

Figure: Always Encrypted wizard: Column Selection

4. In this example, the CEK that was generated with the PowerShell script is used for encrypting the database
column.

a. In the Column Selection window, select the Encryption Key named CEK-YubiHSM-PS.

The Encryption Type can be set to either Deterministic or Randomized. In this example Deterministic
is selected.

b. Click Next, and the Master Key Configuration window in the Always Encrypted wizard appears.

184 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

m Master Ky Conflguration

Irbreduiien & Hep

Column Selecton
Pz adidibonal confgparation is necesseny betause you ane wsing eesling keys

Fan Settings
SUMMEry

Femls

| <pmiow || wets || comee

Figure: Always Encrypted wizard: Master Key Configuration

5. In the Master Key Configuration window, click Next, since the master column key in the YubiHSM 2 will be
used. The Run Settings window in the Always Encrypted wizard appears.

27.8. Encrypt Database Columns 185

YubiHSM 2 User Guide

Introdition

Summasy

M il

L
—

Cokenn Selecton
Master Key Corfiguation

i Help

_ Whils encryptonydecryphion 6 s progres, webe opoatons thadd rat be perlomad on a Bsble,
(B Wwrte opereteas are peformacd, there is 8 poteatal for dats less. his recornmended 1 schedule
thes encrypienddecryption spetban derng your planned maintersnoe smndow,

Selert how ye avaiild bke 10 peocesd

) Generale PowerShel sorpl 1o un later

W Precend 1o Tesh ey

[«Provious || Mea> || Concel

Figure: Always Encrypted wizard: Run Settings

6. In the Run Settings window, select Proceed to finish now (unless you want to generate a PowerShell script to
run later) and click Next. The Summary window in the Always Encrypted wizard appears.

186

Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

m g
Intredustizn

@ Help

Cobsra Selechion

Werity thae chodoes e n This wizsnd
Master Key Celgarstion

Chek Finish bo perlomm the cperstiteg math the following sebangs.
Run Sl

T-S:wmedﬁmmﬁm:

+- Sow e seveer rume WIN- S TINPIKARY

. i i-Souwce debase name Salesd

= Ererypl column Neme

+- Tabibe ame: Table Cistomens
| Encryplien ke narre CEE Vub#5H-FS
L Encryprics type Determin ot

<Prvious | Finish | | Camcdl
. ———————————
Figure: Always encrypted wizard: Summary

7. Review the settings in the Summary window and click Finish. The Results window appears:

27.8. Encrypt Database Columns

187

YubiHSM 2 User Guide

m Abways Encrypted [= o I
| "'4; = Results
Indroduchon i Help

Celumin Selichen
Master Ky Configuestion
Run Settings

iy Saamman

Tk Dielads

Lo § ERCTYDGAN DEesagans

il EnyEred Wizard Log fgen

Figure: Always encrypted wizard: Results

When the column encryption operation succeeds, the word “Passed” is displayed in the Details column of the
relevant row in the Results window.

27.8.2 Encrypt Database Column with SSMS-generated Keys

To use the CMK and CEK that were generated in Use SSMS to Generate the CMK and CEK follow the instructions
above for encrypting a database column with PowerShell-generated keys (Encrypt Database Column with PowerShell-
generated Keys), but select a different column (for example, Address) and use the column encryption key CEK-
YubiHSM-SSMS and the related column master key MK-YubiHSM-SSMS.

27.8.3 Verify Encrypted Database Column

To check that the columns have been encrypted.
1. Expand the object Database > Database-Name. In our example the database name is Sales3.
2. Select New Query in the top menu.

3. Type the SQL query in the example below and click Execute.

SELECT * FROM Table_Customers;

188 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

VSR G - WIN TP AN Ssieid (RITDICRAAINL A NI ston BA1° - MICTaie 501 Servr Mamagoment Sl [Aaminstratan
B (i Yo ey Pxpet Joch Wndew e
- a- CLEP Ay B2 28 X589 B - | EAean-,
W | st -l = JREAEFRF ABo 5% 82 9,
F——] & » SLLLC 0 Takle Custensrs |

AR R AR (50 Serarr ERGED . WNTORRA R L

 tamts [e

Hana Fru— o —
1| R OGO G ST BB DR A . e Do e
¥
T) ey e ubes s el iy

Figure: Checking the encrypted columns

27.9 Configure SSMS for Database Encryption

To configure Microsoft SQL Server and SSMS with the basic database settings needed for testing Always Encrypted
in conjunction with YubiHSM 2, set SSMS to display the encrypted columns in clear text.

1. Select Connect Object Explorer settings.

. Click the Connect Object Explorer icon. The Connect to Server window appears.

o

(o

. Click Options.
. Select the Always Encrypted tab and select Enable Always Encrypted (column encryption).

(@]

d. To make the changes take effect, click the Disconnect icon and then the Connect icon.

27.9. Configure SSMS for Database Encryption 189

YubiHSM 2 User Guide

SQL Server

[Enable Aways Encrypted fcolumn encryption)
Enclave Attestation URL: |

Type the URL for attesting the serverside enclave. if
you are using Always Encrypted with secure enclaves.

Figure: Enable Always Encrypted in SSMS
2. Select Enable Parameterization.
a. In the main menu, click Query and from the drop-down list, select Query options....
The Query Options window appears.
b. Select Execution > Advanced.

c. Select the checkbox for Enable Parameterization for Always Encrypted.

190 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

YubiHSM 2 User Guide

STy The SOV Ced SYacinon semrgi

[]SET HOCOUNT ¥ SET ARITHABORT

(] SET MOEXEC L] SET SHOWFLAN_TEXT
[]SET PARSEOMLY [SET STATISTICS TIME
¥ SET CONCAT_NULL_YIELDS_NULL []SET STATISTICS 10
(] SET XACT_ABORT ON

SET TRANSACTION ISOLATION LEVEL: |READ COMMITTED

SET DEADLOCK_FRIORITY:

SET LOCK TIMEQUT: f

SET QUERY_GOVERNOR_COST_LIMIT: |

[Suppress prowder message haaden

["] Discornect atterthe queny executes

[Suppress emor messages from uns.pported settings

Eriable Parametesgation for Mways Encrypted

[ok || cowe ||

Figure: Enable Parameterization for Always Encrypted queries in SSMS

These are the basic database settings in Microsoft SQL Server and SSMS for testing Always Encrypted in con-
junction with YubiHSM.

3. To verify the settings.
a. Expand the object Database > Database-Name. In our example the database name is Sales3.
b. Select New Query in the top menu again.

c. Re-enter the SQL query in the example below and click Execute.

SELECT * FROM Table_Customers;

When the SSMS settings take effect, the encrypted database columns are decrypted, and the values displayed in
clear text as shown in the screenshot below.

27.9. Configure SSMS for Database Encryption 191

YubiHSM 2 User Guide

b S Cheery g - W 2RUMPICAM G Silouk IMYOORAIRE A miri stratcn (391) - Miceounft S0 S Masagermisn Sudis (A atin]
e f8f Yew ey Propot [mh fndes Den
- o @ MOy BODS0 XA D-C-H |, - Y-
e i i s JREEFREF ARE v |aB|w,
e — |

SELECT * FROM lable Customers;|

B o R A

Hama ‘odrm Jolede Uy Fam
doe fom Gppm 1 105 g s
i [aive Brsties
W B Ty memited psimalulby

Figure: Decrypted values in the database columns

192 Chapter 27. YubiHSM 2 for Microsoft SQL Server Deployment Guide

CHAPTER
TWENTYEIGHT

YUBIHSM 2 WITH KEY STORAGE PROVIDER FOR WINDOWS
SERVER

28.1 Configure YubiHSM 2 Key Storage Provider (KSP) for Microsoft
Windows Server

This guide is intended to help systems administrators deploy YubiHSM 2 for use in a Windows server environment.
The expected outcome is that the YubiHSM 2 is installed and configured with authentication keys, audit keys, and wrap
keys. This guide also explains how to make backups and restore keys on a YubiHSM 2.

These guidelines for deployment cover basic topics, so the instructions should be modified as required for your specific
environment. It is assumed that you are familiar with the concepts and processes for working with Microsoft Windows
Server. It is also assumed that the installation is performed on a single Microsoft Windows Server, but the concept can
be extended to more servers.

Important: Before deploying to production, we recommend that you use this guide for installing and testing the setup
of the YubiHSM 2 with the Microsoft Windows Server installation in a test or lab environment.

28.2 About the YubiHSM Software

The following YubiHSM 2 software is used in this guide. These items are included as part of the archive file you
download from the YubiHSM 2 SDK Tools And Libraries.

YubiHSM Connector - Enables communication between the YubiHSM 2 and applications that use it. We recommend
that the YubiHSM Connector run on the host operating system if the calling application is deployed to a VM. The
Connector must always be running.

YubiHSM Shell - The administrative command line tool used to interact with and configure the YubiHSM 2 device.
If the YubiHSM Shell is installed on a VM, it will connect to the Connector over a networked connection.

YubiHSM Setup - Helps with setting up a device for specific use cases. Currently supports setting up for use with
Microsoft Windows KSP.

YubiHSM Key Storage Provider (KSP) - Acts like a driver for the YubiHSM 2 device on Windows and enables it
to work with applications that leverage Microsoft’s Cryptographic API Next Generation (CNG). Examples of calling
applications are Microsoft Certificate Services or Microsoft SQL Server Always Encrypted.

193

YubiHSM 2 User Guide

28.3 Prerequisites and Preparations

The audience of this guide is an experienced systems administrator with a good understanding of Microsoft Windows
Server management. In addition, it is helpful to be familiar with the terminology, software, and tools specific to
YubiHSM 2. As a primer for these, refer to Glossary.

In order to follow the steps provided in this guide, the following prerequisites must be met:

* Access to Microsoft Windows Server 2012 SP2 or higher, installed in a secure computer network. The system
administrator must have elevated system privileges.

e The YubiHSM 2 SDK downloaded from the Yubico YubiHSM 2 Release page and available on the system to be
used. Installation instructions are given in the following.

* Two (2) YubiHSM 2 devices, one for deployment and one for backup in hardware.

* Key custodians, if your organization policies require them for the YubiHSM 2 deployment. For more information
about key custodians and the associated M of N key shares, see Key Splitting and Key Custodians.

Important: Although it is possible to configure the YubiHSM 2 on a networked machine, to safeguard its integrity,
it is recommended that its configuration be performed on a fresh system in an air-gapped environment, i.e., the steps
in this guide should be performed on a stand-alone computer with both Windows Server 2012 SP2 or higher and the
YubiHSM 2 software installed. And we recommend that you do not store keys - even under wrap - on network-accessible
or otherwise compromise-able storage media.

194 Chapter 28. YubiHSM 2 with Key Storage Provider for Windows Server

https://developers.yubico.com/YubiHSM2/Releases/

CHAPTER
TWENTYNINE

KEY SPLITTING AND KEY CUSTODIANS

The preferred method for backing up the YubiHSM 2 keys calls for key splitting and restoring or regenerating, often
referred to as setting up an M of n scheme (Shamir’s Secret Sharing (SSS). This process ensures no individual can
export key material from the YubiHSM 2 and provides a way to control the import of key material that has been exported
under wrap from one device into other devices. For example, you would export and import objects for backup purposes,
as described in Backup and Restore Key Material.

The key that is split among a predetermined number (n) of key custodians (also known as key shareholders) is known
as the wrap key. Each custodian receives their own unique share. To use the key, a minimum number of shares (m)
must be present so that the key can be regenerated (sometimes called “rejoined””). This minimum number of custodians
is called the privacy threshold. If this threshold is not attained, the wrap key cannot be regenerated. This minimum
number, n, should be larger than one.

The exact number of key shares and the privacy threshold are determined by the requirements of your organization. If
your organization has policies in place that define how this procedure should be performed, be sure you know these
policies before proceeding. You should also have a predetermined practice in place specifying both:

* How the key shares must be recorded (written on paper, photographed, locally printed, or some other means) and

* How they must be stored between uses (for example, offsite archive, safety deposit box, sealed envelope).

|?|??|?

m = Privacy threshold

Figure: Privacy threshold

The YubiHSM Setup Tool enables you to perform the key splitting and assigning of shares to key custodians. To carry
out the setup process, you need to know who the wrap key custodians will be. During setup, all key custodians must
be physically present to record their shares. Exact instructions for key splitting and assigning of shares are given in
Configuring the Primary YubiHSM 2 Device.

195

https://dl.acm.org/doi/10.1145/359168.359176

YubiHSM 2 User Guide

196 Chapter 29. Key Splitting and Key Custodians

CHAPTER
THIRTY

CORE CONCEPTS

30.1 Objects

The first concept that we will present is the Object. Any persistently stored and self-contained piece of information
present in a YubiHSM 2 is an Object. This is intentionally a very generic and broad definition which can be easily
rephrased as everything is an Object. Objects have associated properties that characterize them and give them different
meanings. Regardless of the kind and the specific properties, any YubiHSM 2 device can store up to 256 Objects. Their
combined size cannot exceed 126 KB.

30.1.1 Object Type

To identify what an Object can and cannot do, we define an attribute called Object Type, or simply Type. A Type is
not enough to uniquely identify an Object, but it defines the set of operations that can be performed with or on it. The
following types are defined:

Name Value yubihsm-shell name

Opaque 0x01 opaque
Authentication Key 0x02 authentication-key
Asymmetric Key 0x03 asymmetric-key

Wrap Key 0x04 wrap-key
HMAC Key 0x05 hmac-key
Template 0x06 template

OTP AEAD Key 0x07 otp-aead-key
Symmetric Key 0x08 symmetric-key

Public Wrap Key 0x09 public-wrap-key

30.1.2 Authentication Key

An Authentication Key is one of the most fundamental Objects there are. Authentication Keys can be used to establish
a Session with a device. See Create and Authenticate a Session. An Authentication Key is basically two long-lived
AES keys: an encryption key and a MAC key. When establishing a Session, the long-lived keys are used to generate
three session keys:

* An encryption key used to encrypt the messages exchanged with the device
* A MAC key used to create an authentication tag for each message sent to the device
* A response MAC key used to create an authentication tag for each response message sent by the device

The session keys are temporary and are destroyed when the Session is no longer in use.

197

YubiHSM 2 User Guide

30.1.3 Asymmetric Key

An Asymmetric Key Object is what the YubiHSM 2 uses to represent an asymmetric key-pair where only the private
key can be used to perform cryptographic operations.

30.1.4 HMAC Key

An HMAC Key is a secret key used when computing and verifying HMAC signatures.

30.1.5 Opaque

An Opaque Object is an unchecked kind of Object, normally used to store raw data in the device. No specific restrictions
(besides size limitations) are imposed to this type of Object.

30.1.6 OTP AEAD Key

An OTP AEAD Key Object is a secret key used to decrypt Yubico OTP values for further verification by a validation
process.

30.1.7 Symmetric Key

Available with firmware version 2.3.1 or later.
A Symmetric Key Object is a secret key used when encrypting and decrypting AES.

Object Types are encoded as an 8-bit value.

30.1.8 Template

A Template Object is a binary template used for example to validate SSH certificate requests.

30.1.9 Wrap Key

A Wrap Key Object is a secret key used to wrap and unwrap Objects during the export and import process.

Object Types are encoded as an 8-bit value.

30.1.10 Public Wrap Key

A Public Wrap Key Object is an RSA public key used to wrap Objects and (a)symmetric keys during the export process.

198 Chapter 30. Core Concepts

YubiHSM 2 User Guide

30.2 ALGORITHMS

Name Value EC Curve Usage
yubihsm-shell
name
RSA PKCS1 SHA1 1 rsa-pkcs1-shal
RSA sign with
PKCS1.5
2
RSA PKCS1 rsa-pkcs1- RSA sign with
SHA256 sha256 PKCS1.5
3
RSA PKCS1 rsa-pkces1- RSA sign with
SHA384 sha384 PKCS1.5
4
RSA PKCS1 rsa-pkes1- RSA sign with
SHAS512 sha512 PKCS1.5
RSA PSS SHAI 5 rsa-pss-shal RSA sign with PSS
RSA PSS SHA256 6 rsa-pss-sha256 RSA sign with PSS
RSA PSS SHA384 7 rsa-pss-sha384 RSA sign with PSS
RSA PSS SHAS12 8 rsa-pss-sha512 RSA sign with PSS
RSA 2048 9 rsa2048 Generate RSA key
RSA 3072 10 rsa3072 Generate RSA key
RSA 4096 11 rsa4096 Generate RSA key
EC P256 12 ecp256 secp256rl Generate EC key
EC P384 13 ecp384 secp384rl Generate EC key
EC P521 14 ecp521 secp521rl Generate EC key
EC K256 15 eck256 secp256k1 Generate EC key
EC BP256 16 ecbp256 brainpool256r1 Generate EC key
EC BP384 17 ecbp384 brainpool384r1 Generate EC key
EC BP512 18 ecbp512 brainpool512r1 Generate EC key
HMAC SHA1 19 hmac-shal Generate HMAC
key
HMAC SHA256 20 hmac-sha256 Generate HMAC
key
HMAC SHA384 21 hmac-sha384 Generate HMAC
key
HMAC SHAS12 22 hmac-sha512 Generate ~ HMAC
key
ECDSA SHA1 23 ecdsa-shal ECDSA sign
EC ECDH 24 ecdh
RSA OAEP SHA1 25 rsa-oaep-shal
RSA decrypt with
OAEP

continues on next page

30.2. ALGORITHMS

199

YubiHSM 2 User Guide

Table 1 - continued from previous page

Name Value EC Curve Usage
yubihsm-shell
name
RSA OAEP 26
SHA256 rsa-oaep- RSA decrypt with
sha256 OAEP
RSA OAEP 27
SHA384 rsa-oaep- RSA decrypt with
sha384 OAEP
RSA OAEP 28
SHAS512 rsa-oaep- RSA decrypt with
sha512 OAEP
AES128 CCM 29 Generate Wrap key
WRAP aes128-ccm-
wrap
Opaque Data 30 opaque-data
Store raw data
as an opaque
object
31
Opaque X509 opaque-x509- Store
Certificate certificate X509Certificate
as an opaque
object
MGF1 SHA1 32 mgfl-shal
RSA sign with
PSS and RSA
decrypt with OAEP
MGF1 SHA256 33 mgf1-sha256
RSA sign with
PSS and RSA
decrypt with OAEP
MGF1 SHA384 34 mgf1-sha384
RSA sign with PSS
and RSA decrypt
with OAEP
continues on next page
200 Chapter 30. Core Concepts

YubiHSM 2 User Guide

Table 1 - continued from previous page

Name Value EC Curve Usage
yubihsm-shell
name
MGF1 SHA512 35 mgfl-sha512
RSA sign with PSS
and RSA decrypt
with OAEP
SSH Template 36 template-ssh
Store an SSH
template (a
binary object
used to restrict
how and when an
SSH CA private
key should be
used)
37
Yubico OTP aes128-yubico Generate OTP
AES128 -otp AEAD
key
38
Yubico AES aes128-yubico- Store
Authentication authentication authentication
key
39
Yubico OTP aes192-yubico Generate OTP
AES192 -otp AEAD
key
40
Yubico OTP aes256-yubico Generate OTP
AES256 -otp AEAD
key
41
AES192 CCM aes192-ccm- Generate and
WRAP wrap store wrap key
42
AES256 CCM aes256-ccm- Generate and
WRAP wrap store wrap key
ECDSA SHA256 43 ecdsa-sha256 ECDSA sign
ECDSA SHA384 44 ecdsa-sha384 ECDSA sign

continues on next page

30.2. ALGORITHMS

201

YubiHSM 2 User Guide

Table 1 - continued from previous page

Name Value EC Curve Usage
yubihsm-shell
name
ECDSA SHAS512 45 ecdsa-sha512 ECDSA sign
ED25519 46 ed25519 Generate ED key
EC P224 47 ecp224 secp224rl Generate EC key
AES KWP 55 aes-kwp Internal use only

30.3 Attestation

Asymmetric keys in the YubiHSM can be attested by another Asymmetric key. The attestation process creates a new
x509 certificate for the attested key.

The device comes pre-loaded with an attestation key and certificate referenced by ID 0.

It is possible to use

your own key and certificate for attestation, these then must have the same ID and the key has to have the
sign-attestation-certificate Capability set.

30.3.1 Details

Serial is a random 16 byte integer

Issuer is the subject of the attesting certificate

Dates is copied from the attesting certificate

Subject is the string YubiHSM Attestation id Ox with the attested ID appended

If the attesting key is RSA the signature is SHA256-PKCS#1v1.5
If the attesting key is EC the signature is ECDSA-SHA256

30.3.2 Certificate Extensions

Some certificate extensions are added in the generated certificate and/or the pre-loaded certificate:

OID Description Data Type Generated/Pre-loaded
1.3.6.1.4.1.41482.4.1 Firmware version Octet String Both
1.3.6.1.4.1.41482.4.2 Serial number Integer Both
1.3.6.1.4.1.41482.43 Origin Bit String Generated
1.3.6.1.4.1.41482.4.4 Domain Bit String Generated
1.3.6.1.4.1.41482.4.5 Capability Bit String Generated
1.3.6.1.4.1.41482.4.6 Object ID Integer Generated
1.3.6.1.4.1.41482.4.9 Label Utf8String Generated
1.3.6.1.4.1.41482.4.10 FIPS Integer Pre-loaded
1.3.6.1.4.1.41482.4.12 FIPS Boolean Generated

202

Chapter 30. Core Concepts

YubiHSM 2 User Guide

30.3.3 Pre-Loaded Certificates

The pre-loaded certificate can be fetched as an opaque object with ID 0. This will in turn be signed by an intermediate
CA which is signed by a Yubico root CA.

30.3.4 Intermediates:

E45DASF361B091B30D8F2C6FAO040DBOFEF57918E.pem

30.4 Capability

A Capability is an attribute that can be given to an Objects allowing specific operations to be performed on or with
it. Commands like digital signature generation and data decryption require (and check) for a predetermined set of
Capabilities to be present on an Object. Further below is the list of existing Capabilities.

It is important to know that there are no restrictions on which Capabilities can be set on an Object. Specifically, this
means that it is possible to assign meaningless Capabilities to Objects that will never be able to use them, for example
it is possible to have an Asymmetric Object with the Capability verify-hmac. Such a Capability only makes sense
for HMAC Key objects, but the device allows defining a superset. Lack of Capabilities required for a specific operation
causes a command requiring that Capability to fail.

30.4.1 Delegated Capabilities

Every Object stored on the device has an associated set of Capabilities. There is a second set of so-called Delegated
Capabilities that only Authentication Keys and Wrap Keys have. This is used to capture the indirection that Authen-
tication Keys and Wrap Keys can be used as a means of storing more Objects on a device. In both cases Delegated
Capabilities are used as a filter.

For Authentication Keys, Delegated Capabilities define the set of Capabilities that can be set or “bestowed” onto an
Object created by the Authentication Key. Any operation attempting to create Objects with a Capability outside of this
set fails.

For Wrap Keys, Delegated Capabilities define the set of Capabilities that an Object can have when imported or exported
using the Wrap Key. A larger set of Capabilities causes the import operation to fail.

30.4.2 Protocol Details

A Set of Capabilities is an 8-byte value. Each Capability is identified by a specific bit, as shown in the Hex Mask
column below.

Applicable
Name Hex Mask Objects Description

Asymmetric Keys

continues on next page

30.4. Capability 203

https://developers.yubico.com/YubiHSM2/Concepts/yubihsm2-attest-ca-crt.pem
https://developers.yubico.com/YubiHSM2/Concepts/E45DA5F361B091B30D8F2C6FA040DB6FEF57918E.pem

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
0x0000020000000000
delete-asymmetric authentication Delete
-key -key Asymmetric
Key Objects
0x0000000000000010
generate-asymmetric authentication Generate
-key -key Asymmetric Key
Objects
0x0000000000000008
put-asymmetric-key authentication Write
-key Asymmetric Key
Objects
Authentication Keys
0x0000010000000000
delete-authen- authentication Delete
tication-key -key Authentication
Key Objects
0x0000000000000004
put-authentication authentication Write
-key -key Authentication
Key Objects
0x0000400000000000
change- authentication Replace
authentication-key -key Authentication
Key Objects
Certificate
0x0000000400000000
sign-attestation- authentication Attest
certificate -key, properties of
asymmetric-key Asymmetric
Key Objects
sign-ssh-certificate 0x0000000002000000
authentication Sign SSH
-key, certificates
asymmetric-key
Data

continues on next page

204

Chapter 30. Core Concepts

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
decrypt-cbc 0x0010000000000000
authentication Decrypt data
-key, using AES CBC
symmetric-key mode. Available
with firmware
version 2.3.1
or later.
decrypt-ecb 0x0004000000000000
authentication Decrypt data
-key, using AES ECB
symmetric-key mode. Available
with firmware
version 2.3.1
or later.
decrypt-oaep 0x0000000000000400
authentication Decrypt
-key, data using
asymmetric-key RSA-OAEP
decrypt-pkcs 0x0000000000000200
authentication Decrypt
-key, data using
asymmetric-key RSA-PKCS1v1.5
encrypt-cbc 0x0020000000000000
authentication Encrypt data
-key, using AES CBC
symmetric-key mode. Available
with firmware
version 2.3.1
or later.
encrypt-ecb 0x0008000000000000
authentication Encrypt data
-key, using AES ECB
symmetric-key mode. Available
with firmware
version 2.3.1
or later.
ECDH

continues on next page

30.4. Capability

205

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
derive-ecdh 0x0000000000000800
authentication Perform
-key, ECDH
asymmetric-key
Global
get-option 0x0000000000040000
authentication Read device-
-key global options
set-option 0x0000000000020000
authentication Write device-
-key global options
HMAC
delete-hmac-key 0x0000080000000000
authentication Delete HMAC
-key Key Objects
generate-hmac-key 0x0000000000200000
authentication Generate HMAC
-key Key Objects
put-mac-key 0x0000000000100000
authentication Write HMAC
-key Key Objects
sign-hmac 0x0000000000400000
authentication Compute HMAC
-key, hmac-key of data
verify-hmac 0x0000000000800000
authentication Verity HMAC
-key, hmac-key of data
Log
get-log-entries 0x0000000001000000
authentication Read the Log
-key Store
Opaque
delete-opaque 0x0000008000000000
authentication Delete Opaque
-key Objects

continues on next page

206

Chapter 30. Core Concepts

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
get-opaque 0x0000000000000001
authentication Read Opaque
-key Objects
put-opaque 0x0000000000000002
authentication Write Opaque
-key Objects
OTP
create-otp-aead 0x0000000040000000
authentication Create OTP
-key, AEAD
otp-aead-key
decrypt-otp 0x0000000020000000
authentication Decrypt OTP
-key,
otp-aead-key
delete-otp-acad-key 0x0000200000000000
authentication Delete OTP
-key AEAD Key
Objects
0x0000001000000000
generate-otp-aead authentication Generate OTP
-key -key AEAD Key
Objects
0x0000000800000000
put-otp-acad-key authentication Write OTP AEAD
-key Key Objects
randomize-otp-aead 0x0000000080000000
authentication Create OTP
-key, AEAD from
otp-aead-key random data
0x0000000100000000

rewrap-from-otp-
aead-key

authentication
-key,
otp-aead-key

Rewrap AEADs
from one OTP
AEAD Key
Object to
another

continues on next page

30.4. Capability

207

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
0x0000000200000000
rewrap-to-otp- authentication Rewrap AEADs
aead-key -key, to one OTP
otp-aead-key AEAD Key
Object from
another
Random
get-pseudo-random 0x0000000000080000
authentication Extract
-key random bytes
Reset
reset-device 0x0000000010000000
authentication Perform a
-key factory reset
on the device
Signatures
sign-ecdsa 0x0000000000000080
authentication Compute
-key, digital
asymmetric-key signatures
using ECDSA
sign-eddsa 0x0000000000000100
authentication Compute
-key, digital
asymmetric-key signatures
using EDDSA
sign-pkcs 0x0000000000000020
authentication Compute
-key, signatures
asymmetric-key using RSA-
PKCS1v1.5
sign-pss 0x0000000000000040
authentication Compute
-key, digital
asymmetric-key signatures
using using
RSA-PSS
continues on next page
208 Chapter 30. Core Concepts

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
Template
delete-template 0x0000100000000000
authentication Delete
-key Template
Objects
get-template 0x0000000004000000
authentication Read Template
-key Objects
put-template 0x0000000008000000
authentication Write Template
-key Objects
Wrap
delete-wrap-key 0x0000040000000000
authentication Delete Wrap
-key Key Objects
export-wrapped 0x0000000000001000
authentication Export other
-key, wrap-key Objects under
wrap
0x0000000000010000 all
exportable-under Mark an Object
-wrap as exportable
under wrap
generate-wrap-key 0x0000000000008000
authentication Generate Wrap
-key Key Objects
import-wrapped 0x0000000000002000
authentication Import wrapped
-key, wrap-key Objects
put-wrap-key 0x0000000000004000
authentication Write Wrap Key
-key Objects
unwrap-data 0x0000004000000000
authentication Unwrap user-

-key, wrap-key

provided data

continues on next page

30.4. Capability

209

YubiHSM 2 User Guide

Table 2 - continued from previous page

Applicable
Name Hex Mask Objects Description
wrap-data 0x0000002000000000
authentication Wrap user-
-key, wrap-key provided data
Public Key Wrap
0x0040000000000000
put-public-wrap authentication Write RSA
-key -key, wrap-key Public Wrap Key
0x0080000000000000
delete-public-wrap authentication Delete RSA
-key -key, wrap-key Public Wrap Key
Symmetric Keys
0x0001000000000000
generate-symmetric authentication Generate AES
-key -key key. Available
with firmware
version 2.3.1
or later.
put-symmetric-key 0x0000800000000000
authentication Import AES key.
-key Available with
firmware
version 2.3.1
or later.
delete-symmetric-key 0x0002000000000000
authentication Delete AES key.
-key Available with
firmware

version 2.3.1
or later.

210 Chapter 30. Core Concepts

YubiHSM 2 User Guide

30.5 Domain

A Domain is a logical partition that can be conceptually mapped to a container. In a YubiHSM 2 there are 16 indepen-
dent Domains; an Object can belong to one or more Domains.

Note: Authentication Keys are Objects and thus can belong to multiple Domains.

Domains serve as a means to secure Objects so that they cannot be addressed by independent applications running on
the same device. This is achieved by specifying the Object’s Domain. Only users or applications that belong to the
same Domain as an Object can access it or use it.

The details involved in accessing an Object are explained in the Effective Capabilities (Tying It All Together) page.

30.5.1 Protocol Details

Domains are encoded as 16-bit values, where each Domain is represented by a bit

Domain Number Hex Mask

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000
0x8000

0NN N BN

— e e e k= \O
ANk W= O

30.6 Effective Capabilities (Tying It All Together)

This document describes how Object-related concepts interact with each another.

Let us assume that we are establishing a Session with Authentication Key Oxabcd so that the Session can use the
Asymmetric Key 0x1234 to sign some data. We are assuming that Asymmetric Key 0x1234 is an RSA 2048-bit key
and that we would like to generate a signature using RSASSA-PSS.

30.5. Domain 211

YubiHSM 2 User Guide

30.6.1 Create and Authenticate a Session

Creating and authenticating a Session requires knowledge of what the long-lived keys are (or what the associated
derivation password is).

When a valid Session is established, certain properties of the Authentication Key used to create the Session are inherited
by the Session itself. These are:

* The Domain(s) to which the Authentication Key belongs (for more information, see Domain),
* The Capabilities of the Authentication Key (see Capability) and
» The Delegated Capabilities (see Capability) associated with Authentication Key Oxabcd .

The Session’s inherited properties serve to ensure that the only Objects stored in the HSM 2 that we can see and access
are those that belong to the same Domain(s) as Authentication Key ®xabcd.

30.6.2 Generate a Signature
The required capability must be set on both the Authentication Key used to establish the Session (Authentication Key
®xabcd) and the target Object used to perform the operation (Asymmetric Key 0x1234).

Assuming that Asymmetric Key ®8x1234 is in one such Domain, we can now continue and ask the HSM 2 to generate
a signature. To do so we will send the Sign Data command over the Session. It will not execute successfully unless
the arguments of the command are valid, i.e., no malformed data can be sent to the device or an error will occur.

Both Authentication Key Oxabcd and Asymmetric Key 8x1234 must have the Capability sign-pss set.

30.6.3 Effective Capabilities and Role Definition

The overlap between
» The Capabilities of the Authentication Key used to establish the Session and
» The Capabilities of the target Object involved in the operation

defines the Effective Capabilities. An operation on a given target Object over a given Session can succeed only if the
Capabilities required by the operation are included in the Effective Capabilities.

The interaction between Domains and Effective Capabilities enables flexible setup and role definition. For example,

* It is possible to assign a set of Capabilities to an Object, and then distribute those Capabilities across different
Authentication Keys so that each key is enabled to perform only a single operation on the target Object, and no
key performs the same operation as any other key.

 Similarly, it is possible to disable specified operations by not assigning the requisite Capabilities to an Authen-
tication Key. For example, an “Administrator” Authentication Key could be enabled only to create keys while a
“User” Authentication Key could be enabled only to use those same keys.

212 Chapter 30. Core Concepts

YubiHSM 2 User Guide

30.6.4 Workflow

1. Determine which Objects will have operations performed on them
Determine which Authentication Keys you will use
Determine which operations will be performed

Use a spreadsheet (if necessary) to map out the interaction between the first three items

A

With the aid of the spreadsheet, create domains to enable the interaction.

Note: Authentication Keys are Objects and thus can belong to multiple Domains.

6. You could construct your domains:
e per operation - put an Object and an Authentication Key into each domain, or

 per Object - put the Authentication Key(s) for all the operations to be performed on each Object into a
single domain

 per Authentication Key - put the requisite Object(s) into each Domain.

For example, if you wanted Jan to do the signing and Ola to do the importing, you could adopt any of the above
options, but the Effective Capabilities enable you to assign far more complex webs of responsibilities.

7. Use the spreadsheet to set the Capabilities and Delegated Capabilities appropriately, “appropriateness” being
determined by the Objects and operations to be performed on them.

30.7 Errors

Below are error codes returned by a YubiHSM device.

30.7. Errors 213

YubiHSM 2 User Guide

Name Value Description

OK 0x00 Success

INVALID COMMAND 0x01 Unknown command

INVALID DATA 0x02 Malformed data for the command

INVALID SESSION 0x03 The session has expired or does not
exist

AUTHENTICATION FAILED 0x04 Wrong Authentication Key

SESSIONS FULL 0x05 No more available sessions

SESSION FAILED 0x06 Session setup failed

STORAGE FAILED 0x07 Storage full

WRONG LENGTH 0x08 Wrong data length for the command

INSUFFICIENT PERMISSIONS 0x09 Insufficient permissions for the com-
mand

LOG FULL 0x0a The log is full and force audit is en-
abled

OBJECT NOT FOUND 0x0b No object found matching given ID
and Type

INVALID ID 0x0c Invalid ID

0x0e Constraints in SSH Template not met

SSH CA CONSTRAINT

VIOLATION

INVALID OTP 0x0f OTP decryption failed

DEMO MODE 0x10 Demo device must be power-cycled

OBJECT EXISTS Ox11 Unable to overwrite object

30.8 FIPS

Note: This section applies to YubiHSM 2 FIPS devices only.

The YubiHSM 2 is available in a FIPS-capable version called YubiHSM 2 FIPS.

The YubiHSM 2 FIPS is certified at FIPS 140-2 Level 3, which means it can be used in solutions that are meant to
comply with FIPS 140-2 requirements.

The YubiHSM 2 FIPS can be configured in an approved mode and a non-approved mode of operation. In the approved
mode, only FIPS-approved algorithms are supported. In the non-approved mode, additional non-approved algorithms
such as rsa-pkcsl-shal are supported.

FIPS-approved mode can be configured only after a device reset by enabling the fips-mode option and immediately
changing the default Authentication key.

For instructions on configuring the YubiHSM 2 FIPS in FIPS-approved mode, see FIPS Mode Support Guide.

A key attestation generated on a YubiHSM 2 FIPS device with firmware version 2.4.1 or newer will have an X.509
extension present with OID 1.3.6.1.4.1.41482.4.12. If the key attestation was generated in FIPS-approved mode,
this extension will have the BOOLEAN value TRUE. Otherwise, it will have the BOOLEAN value FALSE.

The pre-loaded certificate of a YubiHSM 2 FIPS device will have an X.509 extension present with OID 1.3.6.1.
4.1.41482.4.10. This extension will have an INTEGER value encoding its FIPS certificate. Currently, the value 6
refers to the YubiHSM 2 FIPS certificate for firmware version 2.2.

214 Chapter 30. Core Concepts

https://docs.yubico.com/hardware/yubihsm-2/hsm-2-user-guide/hsm2-fips-support-guide.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3916

YubiHSM 2 User Guide

30.9 Label

A Label is a sequence of bytes that can be used to add a mnemonic reference to Objects.

30.9.1 Protocol Details

Labels are 40 bytes long. As far as the YubiHSM is concerned, the label is only a string of raw bytes and is not restricted
to printable characters or valid UTF-8 glyphs.

30.10 Logs

A YubiHSM 2 device maintains a list of recently executed commands in a portion of non-volatile memory known as
the Log Store. This allows logging commands across different power cycles. Specific commands are used to extract
logs from the device. Since the Log Store uses non-volatile memory, it can only store up to 62 different entries. When
the Log Store is full, it is used as a circular buffer, meaning that the least recently used entry is overwritten.

It is possible to set the device in Force Audit mode. When this is done entries from the Log Store must be retrieved or
commands that cannot be logged will fail. Together with individual commands, power-on and reboot events are also
logged.

The establishment of a session is logged like any other operation; however those commands are always allowed, in-
dependent of the current status of the Log Store. This is so that it is always possible to retrieve logs and free up the
Log Store, even when the device is in Force Audit mode and the Log Store is full. However, the number of unlogged
authentication and power-up events is stored in a counter that is retrieved as part of the log retrieval.

Entries in the Log Store are organized to form a chain of hashes. This enables auditors to verify that a given set of
entries has not been tampered with after extraction, and that all entries are present. More details on the format of log
entries can be found in the protocol description document for GET LOG ENTRIES Command.

30.11 Object ID

The ID property is used to identify an Object of a given Type. This means that to uniquely identify an Object stored
on a YubiHSM 2, the couple (Type, ID) is required. There can be more than one Object with a given ID and more
than one Object with a given Type, but only one Object with a specific ID and Type. This is so that logical connections
between Objects can be established by giving a set of connected Objects of different Types the same ID.

An Object ID can have values in the range [0-65535] or [0x0000-0xffff] in hexadecimal. Note that this range is
larger than the maximum number of Objects that can be stored in the device (256). Regardless of the type, ID 0x0000
and Oxffff are reserved for internal Objects.

30.11.1 Protocol Details

Object IDs are encoded as 16-bit values.

30.9. Label 215

YubiHSM 2 User Guide

30.12 Options

Options are device-global settings. The following Options are defined:

Option Name Hex Value

force-audit 0x01
command-audit 0x03

The data payload is Option-specific.

30.12.1 Force Audit
This Option is used to enable Force Audit mode which prevents the device from performing additional operations when
the Logs is full.
The Option accepts three different values:
* 0x00: Option disabled
* 0x01: Option enabled

* 0x02: Option permanently enabled (only possible to turn off through factory reset)

30.12.2 Command Audit

This Option is used to enable or disable logging of specific commands. Logging commands impacts performance. By
default logging is enabled for all operations.

The Option accepts three different values:
* 0x00: Option disabled
* 0x01: Option enabled
* 0x02: Option permanently enabled (only possible to turn off through factory reset)

Multiple commands can be specified at once with the syntax C1 V1, C2 V2, ..., Cn Vnwhere Ci is the Command
Code and Vi is the Option Value. An example of this syntax can be found at the SET OPTION Command description.

30.13 Origin

The Origin is a one-byte value that is part of the metadata associated with an asymmetric key object. The origin
indicates whether the asymmetric key was generated on a YubiHSM 2 device or generated externally and subsequently
imported. If a key was imported, the origin also indicates whether the key was imported in plaintext or using a wrap
key.

Origins are also used when generating a key attestation. The attestation certificate will contain the key’s origin as an
X.509 extension. See Attestation.

216 Chapter 30. Core Concepts

YubiHSM 2 User Guide

30.13.1 Protocol Details

Origins are encoded as 8-bit values, where each defined origin is represented by a bit according to the following table:

Name Hex Mask
generated 0x0001
imported 0x0002

imported_wrapped 0x0010

Note that not all combinations of these bits are valid. In practice, only the combinations 8x0001, 0x0002, and 0x0011,
0x0012 can occur.

30.14 Sequence

The Sequence is a one-byte value that is part of the metadata associated with an Object. The Sequence describes how
many times an Object with a given ID and Type has been written. This is mostly useful for caching to determine if new
data needs to be fetched from the device.

30.14.1 Protocol Details

Sequence is 8 bits long and will wrap.

30.15 Session

A Session is not a property of a specific Object, but rather it is used to describe a logical connection between an
application and a device. Sessions are end-to-end encrypted and authenticated using Session Keys. These keys are
derived from long-lived, pre-shared Authentication Key Objects as part of the sessions authentication process. The
Session creation and authentication protocol is based on Global Platform SCP03.

On a single YubiHSM 2 it is possible to establish up to 16 independent and concurrent Sessions. Note that while
multiple concurrent Sessions can be active at a given time, the device still serves as a rendezvous point. This means
that time-consuming operations such as generating a long RSA key will block commands in other Sessions. Sessions
are addressed with a number in the range [0-15].

Sessions have an expiration period of 30 seconds of inactivity in order to prevent resource starvation. After 30 seconds,
the device will consider a Session inactive and will move it to the pool of re-usable Sessions. Whenever a command is
executed on a given Session, the inactivity timer is reset, meaning that if a Session is being constantly used, it will not
expire.

Some of the operations that can be performed on a YubiHSM 2 do not require a Session. The implication is that the
command and its response will travel unencrypted to and from the device. These commands are only generic status
commands, making Sessions required for any meaningful operation.

The long-lived keys required to derive Sessions can be explicitly used in the relevant commands. However, there are
built-in functionalities to derive those keys from a password using 10, 000 iterations of PBKDF2 with the salt Yubico,
making the process more human-friendly. Every new or factory-reset YubiHSM 2 has a default Authentication
Key with ID 1 and all Capabilities and all Domains set. This is equivalent to a superuser or an administrator. The
long-lived keys for this Object are derived using the process previously described with the password password.

30.14. Sequence 217

YubiHSM 2 User Guide

Warning: It is crucial to delete this well-known Authentication Key before deployment.

218 Chapter 30. Core Concepts

CHAPTER
THIRTYONE

YUBIHSM COMMAND REFERENCE

This section contains a list of the commands supported by the YubiHSM 2.

Important: The YubiHSM 2 is certified at FIPS 140-2 Level 3 .

The low-level format for each command message and the relative response is provided, together with an example of
how that command can be used within the yubihsm-shell.

31.1 OPEN SESSION Command

This command is the combination of sending two commands in sequence to the YubiHSM:
¢ The command to create a session
¢ The command to authenticate the session

The user of yubihsm-shell does not need to run these commands separately as that is taken care of by the session open
command that uses those two commands behind the scenes.

Opens an authenticated session to the device. Subsequent commands can be communicated to the device over this
authenticated session.

31.1.1 Interactive Mode

yubihsm> session open w:authkey, i:password=-

Parameters

» authkey Required.
Authentication key object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* password

The password used to authenticate the session. The password is prompted for if not specified.

219

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3916

YubiHSM 2 User Guide

Example

Create a new session with Authentication Key 1 using the password password. This does both the session creation
and authentication steps.

yubihsm> session open 1 password
Created session 0

31.1.2 Command Line Mode

A session is automatically created when executing yubihsm-shell commands on the command line.

31.2 AUTHENTICATE SESSION Command

Complete the mutual authentication process started with CREATE SESSION Command.

Finish the Session negotiation and authenticate the Session to the device. After this command completes suc-
cessfully the Session is authenticated and can be used.

31.2.1 Shell Example

Create a new Session with Authentication Key 1 using the password password, this performs both the creation and
authentication steps.

yubihsm> session open 1 password
Created session 0

31.2.2 Protocol Details

Command
Tc = 0x04
Lc = 17

Vc=S || B || M

where —

S = Session ID (1 byte)

B = Host Cryptogram (8 bytes)

M =CMAC(S-MAC, 016 || T [| Lc + 8 || S || B) (8 bytes)
This is the first authenticated message in the chain.

The device verifies M and B, both using S-MAC.

220 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Response
Tr = 0x84
Lr = 0
Vr = 0@

31.3 OPEN SESSION ASYMMETRIC Command

Available with firmware version 2.3.1 or later.

Opens an authenticated session to the device using an asymmetric key. The YubiHSM2 and a client should have
exchanged public keys earlier. The asymmetric keys are created from the curve EC-P256.

A session opened with an asymmetric authentication key does not need to be authenticated separately. The command
is immediately usable if the CREATE SESSION command is successful.

Subsequent commands can be communicated to the device over this authenticated session.

31.3.1 Interactive Mode

yubihsm> session open_asym w:authkey,i:privkey=-

Parameters

 authkey Required.

ObjectID of the asymmetric authentication key used to open a session. Object ID is a 2 bytes integer.
Can be specified in hex or decimal

¢ privkey Required.
The private key to open the session with
Possible Values: Password, path to file or - for stdin

Default format: PEM

Example

Create a new session with Authentication Key 100 using a private key stored in priv.key. This does both the session
creation and authentication steps.

yubihsm> session open_asym 100 priv.key
Created session 0

31.3. OPEN SESSION ASYMMETRIC Command 221

YubiHSM 2 User Guide

31.3.2 Command Line Mode

Asymmetric authentication keys cannot be used in command line mode.

31.3.3 Protocol Details

Command

Tc = 0x03
Lc 67
Vc I || K

where —

I = Key ID of an asymmetric authentication key (2 bytes)

K = Ephemeral client public key (65 bytes)

On success the device generates a Session ID S (1 byte) and sets the message counter for the current Session to 1.

The error ERROR_INV_DATA if K is not a valid EC-P256 key.

Response

Tr 0x83
Lr = 82
Vr S || Kd || R

where —

S = Session ID (1 bytes)

Kd = Ephemeral device public key (65 bytes)
R = Recipient (16 bytes)

31.4 BLINK DEVICE Command

Blink the LED of the device to identify it.

This device must be sent over an authenticated session.

31.4.1 Shell Example

Blink the device for 15 seconds.

yubihsm> blink 0 15

222 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.4.2 Interactive Mode

yubihsm> blink e:session, b:seconds=10

Parameters

* seconds
Number of seconds to blink.
Default Value: 10
* session Required.
The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Blink the device for 15 seconds.

yubihsm> blink 0 15

31.4.3 Command Line Mode

$ yubihsm-shell -a blink-device [--authkey <authKeyID> -p <password> --duration
—<duration>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1

e —-duration=INT
Number of seconds to blink.
Default Value: 10

* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

31.4. BLINK DEVICE Command 223

YubiHSM 2 User Guide

Example

Blink the device for 15 seconds.

$ yubihsm-shell -a blink-device --duration 15

31.4.4 Protocol Details

Command

Tc 0x6b
Lc 1
Vc =S

where —

S = Seconds to blink for (1 byte)

Response
Tr = 0xeb
Lr = 0
Vr = @

31.5 CHANGE ASYMMETRIC AUTHENTICATION KEY Command

Available with firmware version 2.3.1 or later.

Replace the Asymmetric Authentication Key used to establish the current Session. It is not possible to modify any of
the metadata connected to the Object such as Domains or Capabilities. Only the public key will be modified.

This command must be sent over an authenticated session.

31.5.1 Interactive Mode

yubihsm> change authkey_asym e:session,w:key_id,i:pubkey=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

ObjectID of the authentication key used to open the current session and whose public key will be
changed. Object ID is a 2 bytes integer. Can be specified in hex or decimal

* pubkey

224 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

The new public key.
— When using stdin, click CTRL-D to mark end of input.

— Input format for a password string is password.

— If password format is used, the tool will derive an ec-p256 private key from the input string and
calculate the public key from that. The private key is not used for anything else.

Possible Values: File containing the client’s public key as an uncompressed ec-p256 public key,

password or - for stdin

Default Value: stdin

Possible Format for public key file: PEM, HEX, binary
Default format: PEM

Example

Change the current Asymmetric Authentication Key to newkey . pub:

yubihsm> change authkey_asym 0 100 newkey.pub
Changed Authentication key 0x0064

31.5.2 Command Line Mode

This command is not available in command line mode.

31.5.3 Protocol Details

Command
Tc = 0x6c
Lc =2+ 1+ 16 + 16

Ve =1 || A || Key

Replace the currently used Authentication Key with a new set of keys.
where —

I = Object ID of the Authentication Key (2 bytes)

A = ALGORITHMS (1 byte) (ec-p256-yubico-authentication = 0x31)
Key = Uncompressed EC-P256 public key (64 bytes)

31.5. CHANGE ASYMMETRIC AUTHENTICATION KEY Command

225

YubiHSM 2 User Guide

Response

Tr = 0xec
L7 = 2
Vr = 1

where —

I = Object ID of the changed Object (2 bytes)

Note: This command returns ERROR_INV_DATA if Key is not a valid EC-P256 key.

31.6 CHANGE AUTHENTICATION KEY Command

Available with firmware version 2.2.0 or later.

Replace the Authentication Key used to establish the current Session. It is not possible to modify any of the metadata
connected to the Object such as Domains or Capabilities. Only the payload data of the Object (for example, the long-
lived symmetric keys) will be modified.

The same PBKDF2 derivation scheme described in Session is available.

This device must be sent over an authenticated session.

31.6.1 Shell Example

Change the current Authentication Key deriving it from the password newpassword.

yubihsm> change authkey 0 1 newpassword
Changed Authentication key 0x0001

31.6.2 Interactive Mode

yubihsm> change authkey e:session, w:key_id, i:password=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

The ObjectID of the authentication key used to open the current session and whose password will be
changed. Object ID is a 2 bytes integer. Can be specified in hex or decimal.

e password

The new password for key_id. The password is prompted for if not specified.

226 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Change the current Authentication Key deriving it from the password newpassword.

yubihsm> change authkey 0 1 newpassword
Changed Authentication key 0x0001

31.6.3 Command Line Mode

This command is not available in command line mode.

31.6.4 Protocol Details

Command
Tc = 0x6¢C
Lc =2+ 1+ 16 + 16

Vc

I [l Al Ke]] Kn

Replace the currently used Authentication Key with a new set of keys.
where —

I = Object ID of the Authentication Key (2 bytes)

A =ALGORITHMS (1 byte)

Ke = Encryption Key (16 bytes)

Km = Mac Key (16 bytes)

Response

Tr Oxec
Lr = 2
Vr = 1

where —

I = Object ID of the changed Object (2 bytes)

31.7 CLOSE SESSION Command

Close the current Session and release it for re-use. This device must be sent over an authenticated session.

31.7. CLOSE SESSION Command

227

YubiHSM 2 User Guide

31.7.1 Shell Example

Close Session 0.

yubihsm> session close 0

31.7.2 Interactive Mode

yubihsm> session close e:session

Parameters

session Required.

The ID of the session to close.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
Example

Close Session 0.

yubihsm> session close 0

31.7.3 Command Line Mode

This command does not need to be run separately on the command line. The session will automatically close after the
command has been executed.

31.7.4 Protocol Details

Command
Tc = 0x40
Lc =0
Ve = 0
Response
Tr = 0xc®
Lr = 0
Vr = @

228 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.8 CREATE OTP AEAD Command

Create a Yubico OTP AEAD using the provided data. This device must be sent over an authenticated session.

31.8.1 Shell Example

Create a new AEAD using Otp-acad Key 0x027c with the key 000102030405060708090a0b0c0d0e®f and private
ID 010203040506. Store the result in the file aead.

yubihsm> otp aead_create 0 0x027c 000102030405060708090a0b0c0®d0e®f 010203040506 aead

31.8.2 Interactive Mode

yubihsm> otp aead_create e:session, w:key_id, i:key, i:private_id, F:aead

Parameters

» aead Required.
The file to store the Yubico OTP AEAD.
Default input format: hex
* key Required.
The key used to create the Yubico OTP AEAD.
* key_id Required.
OTP AEAD key object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
e private_id Required.
The private ID used to create the Yubico OTP AEAD.
* session Required.
The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Create a new AEAD using Otp-acad Key 0x027c with the key 000102030405060708090a0b0c0d0e®f and private
ID 010203040506. Store the result in the file aead.

yubihsm> otp aead_create 0 0x027c 000102030405060708090a0b0cO®d0e®f 010203040506 aead

31.8. CREATE OTP AEAD Command 229

YubiHSM 2 User Guide

31.8.3 Command Line Mode

This command is not available in command line mode.

31.8.4 Protocol Details

Command

Tc = 0x61
Lc = 24
Vc I || K || P

where —

I = Object ID of the OTP AEAD Key (2 bytes)
K = OTP Key (16 bytes)

P = OTP Private ID (6 bytes)

Response

Tr Oxel
Lr = LA
Vr = A

where —

A = Nonce concatenated with AEAD (36 bytes)

31.9 CREATE SESSION Command

Begin the mutual authentication process for establishing a Session.

Start negotiating a Session with the device. This command tells the device which Authentication Key to use and sends
the host challenge part. The response contains the device challenge and device authentication part. To establish the
session continue with AUTHENTICATE SESSION Command.

31.9.1 Shell Example

Create a new session with Authentication Key 1 using the password password. This does both the session creation
and authentication steps.

yubihsm> session open 1 password
Created session 0

230 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.9.2 Protocol Details

Command

Tc = 0x03
Lc = 10
Vc I || H

where —

I = Key set ID (2 bytes)

H = Host Challenge (8 bytes)

The device generates a random Card Challenge C (8 bytes).

The device derives three Session Keys (S-ENC, S-MAC and S-RMAC) starting from the set of two static keys identified
by I (K-ENC and K-MAC) and the two challenges H and C, using the same procedure described in SCP03.

The device uses S-MAC together with H and C to compute the Card Cryptogram A. The host will compute the Host
Cryptogram B after having received C and derived S-MAC.

On success the device generates a Session ID S (1 byte) and sets the message counter for the current Session to 1.

Response

Tr = 0x83

Lr = 17

Ve =S || C || A

31.10 DECRYPT CBC Command

Available with firmware version 2.3.1 or later.

Decrypt data in CBC mode.

31.10.1 Interactive Mode

yubihsm> decrypt aescbc e:session,w:key_id,s:iv,i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID of the symmetric key to decrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

* iv Required.

31.10. DECRYPT CBC Command 231

YubiHSM 2 User Guide

Encryption initialization vector. 16 bytes in HEX format.
* data
Data to decrypt. When using stdin, the end of input is marked with CTRL-D.
Possible Values: Data or - for stdin
Default Value: stdin
Input format: PEM
Output format: HEX

Example

Decrypt data using key 0x0064:

yubihsm> decrypt aescbc 0 0x0064 00000000000000000000000000000000..,
—SGOOU4ACT2pH2dnd967KyTU50g9d] 8edx] jO£3Yt529GQ=
c5cffalc2333£fd824a86951cf602bcal

31.10.2 Command Line Mode

$ yubihsm-shell -a decrypt-aescbc -i <key_id> --iv <iv> [--in <data> --out <out> --
—authkey <authKeyID> -p <password>]

Parameters

¢ —--—authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password will be prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the symmetric key to decrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

e --iv=STRING Required.
Encryption initialization vector. 16 bytes in HEX format.
e --in=STRING
Data to decrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with CTRL-D.
Possible Values: data or stdin
Default Value: stdin
Input format: Binary

e —-out=STRING

232 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Decrypted data.
Possible Valued: Path to file or stdout
Default Value: stdout

Output format: HEX

Example

Decrypt data using key 0x0064:

$ yubihsm-shell -a decrypt-aescbc -i 0x0064 --iv 00000000000000000000000000000000 --in,,
—.data.enc
c5cffalc2333£d824a86951cf602bcal

31.10.3 Protocol Details

Command
Tc = 0x71
Lc =2 + 16 + LE

Vce=I/|| V|| E

where —

I = Object ID of the symmetric key (2 bytes)

V = Encryption initialization vector (IV) in HEX (16 bytes)
E = Data to decrypt

Response

Tr = 0xfl
Lr = LD
Vr D

where —

D = Decrypted data

31.11 DECRYPT ECB Command

Available with firmware version 2.3.1 or later.

Decrypt data in ECB mode.

31.11. DECRYPT ECB Command 233

YubiHSM 2 User Guide

31.11.1 Interactive Mode

yubihsm> decrypt aesecb e:session,w:key_id,i:data=-

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

e data

Example

Object ID of the symmetric key to decrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

Data to decrypt. When using stdin, the end of input is marked with CTRL-D.
Possible Values: Data to sign or - for stdin

Default Value: stdin

Input format: PEM

Output format: HEX

Decrypt data using key 0x0064:

yubihsm> decrypt aesecb 0 0x0064 SGOOUACT2pH2dnd967KyTQSIdITILAhWsmhdFIkHAZMO=
c5cffalc2333£d824a86951cf602bcal

31.11.2 Command Line Mode

$ yubihsm-shell -a decrypt-aesecb -i <key_id> [--in <data> --out <out> --authkey
—<authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1

* -p, --password=STRING Required.
The password to authentication key used to open a session. The password will be prompted for if not
specified.
e -i, --object-id=SHORT Required.
234 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Object ID of the symmetric key to decrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal

e —-in=STRING
Data to decrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with CTRL-D.
Possible Values: data or stdin
Default Value: stdin
Input format: Binary
* --out=STRING
Decrypted dat.
Possible Values: Path to file or stdout
Default Value: stdout

Output format: HEX

Example

Decrypt data using key 0x0064:

$ yubihsm-shell -a decrypt-aesecb -i 0x0064 --in data.enc
c5cffalc2333£d824a86951cf602bcal

31.11.3 Protocol Details

Command

Tc = Ox6f
Lc 2 + LE
Vc I || E

where —
I = Object ID of the symmetric key (2 bytes)
D = Data to decrypt

Response

Tr Oxef
Lr = LD
Vr =D

where —

D = Decrypted data

31.11. DECRYPT ECB Command 235

YubiHSM 2 User Guide

31.12 DECRYPT OAEP Command

Decrypt data encrypted with RSA-OAEP.

31.12.1 Example

Decrypt data stored in file enc using key 0x79c3:

yubihsm> decrypt oaep 0 0x79c3 rsa-oaep-shal enc
x1wIc7yQf/KkV5v4Y87Q9ZSqLReoNAx1CmmMPA4WO8U=

31.12.2 Protocol Details

Command
Tc = 0x59
Lc =2+ 1+ LD+ LH

Vce=I || M || D]|| H

where —

I = link:../Concepts/Object_ID.adoc[Object ID] of the Asymmetric Key (2 bytes)

M = Hash link:../Concepts/Algorithms.adoc[Algorithm] to use for MGF1 (1 byte)

D = Decryption data (256, 384 or 512 bytes)
H1 = Hash of OAEP Label (20, 32, 48 or 64 bytes)

Response

Tr 0xc9
Lr = Lr
Vr R

where —

R = Decrypted data with OAEP padding removed

31.13 DECRYPT OTP Command

Decrypt a Yubico OTP and return counters and timer information.

236

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.13.1 Shell Example

Decrypt a (hex encoded) Yubico OTP using key ID 0x027c.

yubihsm> otp decrypt 0 0x027c 2f5d71a4915dec304aal3ccf97bb0dbb aead
OTP decoded, useCtr:1, sessionCtr:1, tstph:1, tstpl:1

31.13.2 Interactive Mode

yubihsm> otp decrypt e:session, w:key_id, s:otp, i:aead

Parameters

* aead Required.

Nonce concatenated with AEAD (36 bytes).

Possible Values: Path to file containing the AEAD

Default format: binary
* key_id Required.

OTP AEAD key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* otp Required.

OTP to decrypt.

Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384, rsa-oaep-sha512
* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Decrypt a (hex encoded) Yubico OTP using key ID 0x027c.

yubihsm> otp decrypt 0 0x027c 2f5d71a4915dec304aal3ccf97bb0Odbb aead
OTP decoded, useCtr:1, sessionCtr:1, tstph:1, tstpl:1

31.13.3 Command Line Mode

This command is not available in command line mode.

31.13. DECRYPT OTP Command 237

YubiHSM 2 User Guide

31.13.4 Protocol Details

Command

Tc = 0x60

Lc = 2 + 36 + 16
Vc=K || A]|] O
where —

I = Object ID of the OTP AEAD Key (2 bytes)
A = Nonce concatenated with AEAD (36 bytes)
0 = OTP (16 bytes)

Response
Tr = 0xe0®
Lr = 6

Ve =S [| U || Th || T1

where —

S = Session counter (2 bytes)
U = Usage counter (1 byte)

Th = Timestamp high (1 byte)
T1 = Timestamp low (2 bytes)

31.14 DECRYPT PKCS1 Command

Decrypt data encrypted with RSA-PKCS#1v1.5.

31.14.1 Shell Example

Decrypt the file enc using key 0xa930.

yubihsm> decrypt pkcslvl_5 0 0xa930 enc xlwIc7yQf/KkV5v4Y87Q9ZSqLReoNAx1CmmMPA4WO8U=

31.14.2 Interactive Mode

yubihsm> decrypt pkcslvl_5 e:session, w:key_id, i:data=-

238

Chapter 31

. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

* data

Input data to decrypt.

Possible Values: Path to file or - for stdin

Default Value: stdin

Default data format: binary
* key_id Required.

RSA key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Decrypt the file enc using key 0xa930.

yubihsm> decrypt pkcslvl_5 0 0xa930 enc xlwIc7yQf/KkV5v4Y87Q9ZSqLReoNAx1CmmMPA4WO8U=

31.14.3 Command Line Mode

$ yubihsm-shell -a decrypt-pkcslvl5 -i <key_id> [--authkey <authKeyID> -p <password> --
—in <data> --out <out_data> --informat <data_format> --outformat <outdata_format>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
e -i, --object-id=SHORT Required.

Object ID or an RSA key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
¢ —-in=STRING

Data to decrypt.

Possible Values: Path to file or stdin

Default Value: stdin

Default data format: binary
e --informat=ENUM

Input data format.

Possible Values: base64, binary, PEM, hex

31.14. DECRYPT PKCS1 Command 239

YubiHSM 2 User Guide

* —-out=STRING
Decrypted data.
Possible Values: Path to file or stdout
Default Value: stdout
Default data format: binary
* ——outformat=ENUM
Output data format.
Possible Values: base64, binary, PEM, hex
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

Example

Decrypt data stored in file enc using key 0x79c3.

$ yubihsm-shell -a decrypt-pkcslvl5 -i 0x79c3 --in enc xlwIc7yQf/
—KkV5v4Y87Q9ZSgLReoNAx1CmmMPA4WO8U=

31.14.4 Protocol Details

Command

Tc = 0x49
Lc 2 + LD
Vc I || D

where —
I = Object ID of the Asymmetric Key (2 bytes)
D = Decryption data (256, 384 or 512 bytes)

The data is padded using the PKCS#1v1.5 scheme with Block Type 2. The data is decrypted and conformance to the
padding scheme must be checked. Padding is then removed and the contained message is returned.

Response

Tr 0xc9
Lr = LR
Vr R

where —

R = Decrypted data with padding removed.

240 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.15 DELETE OBJECT Command

Delete an Object in the device.

31.15.1 Shell Example

Delete Asymmetric Key 0x52b6.

yubihsm> delete 0 0x52b6 asymmetric-key

31.15.2 Interactive Mode

yubihsm> delete e:session, w:id, t:type

Parameters

* id Required.

Object ID of the object to delete. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* type Required.

Type of the object to delete.

Possible Values: asymmetric-key, authentication-key, hmac-key, opaque, otp-aead-key, template,
wrap-key

Example

Delete Asymmetric Key 0x52b6.

yubihsm> delete 0 0x52b6 asymmetric-key

31.15.3 Command Line Mode

$ yubihsm-shell -a delete-object -i <id> -t <type> [--authkey <authKeyID> -p <password>.
]

31.15. DELETE OBJECT Command 241

YubiHSM 2 User Guide

Parameters

¢ —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
e -i, --object-id=SHORT Required.

Object ID of the object to delete. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

* -t, --object-type=STRING Required.
Type of the object to delete.

Possible Values: asymmetric-key, authentication-key, hmac-key, opaque, otp-aead-key, template,
wrap-key

Example

Delete Asymmetric Key 0x52b6.

$ yubihsm-shell -a delete-object -i 0x52b6 -t asymmetric-key

31.15.4 Protocol Details

Command

Tc
Lc
Vc

0x58
2 + 1
I || T

where —
I = Object ID (2 bytes)
T =Type, Objects (1 byte)

Response
Tr = 0xd8
Lr = 0
Vr = @

242 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.16 DERIVE ECDH Command

Perform an ECDH key exchange with the private key in the device.

31.16.1 Shell Example

Perform an ECDH operation with key ®x52b6 and a public key in the file pubkey.pem.

yubihsm> derive ecdh 0 0x52b6 pubkey.pem
5898516bcb0cb3db89d53471137c2d1c741b8babebf2bb01£f4a62d97342e97b2

31.16.2 Interactive Mode

yubihsm> derive ecdh e:session, w:key_id, i:pubkey=-

Parameters

* key_id Required.

Object ID of an EC key. Object ID is a 2 bytes integer. Can be specified in hex or decimal
* pubkey

The public key of another EC key.

Possible Values: Path to file or - for stdin

Default Value: stdin

Default data format: PEM
* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Perform an ECDH operation with key 0x52b6 and a public key in the file pubkey . pem.

yubihsm> derive ecdh 0 0x52b6 pubkey.pem
5898516bcb0cb3db89d53471137c2d1c741b8babebf2bb01f4a62d97342e97b2

31.16. DERIVE ECDH Command 243

YubiHSM 2 User Guide

31.16.3 Command Line Mode

$ yubihsm-shell -a derive-ecdh -i <key_id> [--authkey <authKeyID> -p <password> --in
—.<pubkey> --out <ecdh> --informat <pubkey_format> --outformat <ecdh_format>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
e -i, --object-id=SHORT Required.
EC key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
¢ —-in=STRING
The public key of another EC key.
Possible Values: Path to file or stdin
Default Value: stdin
Default Data Format: PEM
e —-informat=ENUM
Format of public key.
Possible Values: base64, binary, PEM, hex
Default Value: PEM
¢ —-out=STRING
ECDH key.
Possible Values: Path to file or stdout
Default Value: stdout
Default Data Format: PEM
e ——outformat=ENUM
Format of ECDH key.
Possible Values: base64, binary, PEM, hex
Default Value: PEM
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

244 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Perform an ECDH operation with key x52b6 and a public key in the file pubkey.pem.

$ yubihsm-shell -a derive-ecdh -i 0x52b6 --in pubkey.pem
5898516bcb0cb3db89d53471137c2d1c741b8babebf2bb01f4a62d97342e97b2

31.16.4 Protocol Details

Command

Tc
Lc
Vc

0x57
2 + LD
K || D

where —

I = Object ID of the Asymmetric Key (2 bytes)

D = Uncompressed public key to perform the exchange with (57, 65, 97, 129 or 133 bytes)

Response

Tc 0xd7
Lc = LX
Ve = X

where —

X = X coordinate of the completed key exchange

31.17 DEVICE INFO Command

Gets device version, device serial, supported ALGORITHMS and available log entries.

31.17.1 Shell Example

Fetch device info for currently connected device. In YubiHSM with firmware version 2.4 and above, the device info
also return Part number which is required by FIPS.

yubihsm> get deviceinfo
Version number:

Serial number:

Log used:

Supported algorithms:

2.0.0
2000000
2/62

rsa-pkcsl-shal, rsa-pkcsl-sha256, rsa-pkcsl-sha384,

rsa-pkcsl-sha512, rsa-pss-shal, rsa-pss-sha256,
rsa-pss-sha384, rsa-pss-sha512, rsa2048,

rsa3072, rsad4096, ecp256, ecp384, ecp521, eck256,
ecbp256, ecbp384, ecbp512, hmac-shal, hmac-sha256,
hmac-sha384, hmac-sha512, ecdsa-shal, ecdh,

(continues on next page)

31.17. DEVICE INFO Command

245

YubiHSM 2 User Guide

Part number:

(continued from previous page)

rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384,
rsa-oaep-sha512, aesl28-ccm-wrap, opaque-data,
opaque-x509-certificate, mgfl-shal, mgfl-sha256,
mgfl-sha384, mgfl-sha512, template-ssh,
aes128-yubico-otp, aesl28-yubico-authentication,
aes192-yubico-otp, aes256-yubico-otp,
aes192-ccm-wrap, aes256-ccm-wrap,

ecdsa-sha256, ecdsa-sha384, ecdsa-sha512,
ed25519, ecp224,

78CLUFX5000P

31.17.2 Interactive Mode

yubihsm> get deviceinfo

Example

Fetch device info for currently connected device.

yubihsm> get deviceinfo

Version number:
Serial number:

Log used:

Supported algorithms:

2.0.0

2000000

2/62
rsa-pkcsl-shal, rsa-pkcsl-sha256, rsa-pkcsl-sha384,
rsa-pkcsl-sha512, rsa-pss-shal, rsa-pss-sha256,
rsa-pss-sha384, rsa-pss-sha512, rsa2048, rsa3072,
rsad4096, ecp256, ecp384, ecp521, eck256, ecbp256,
ecbp384, ecbp512, hmac-shal, hmac-sha256, hmac-sha384,
hmac-sha512, ecdsa-shal, ecdh, rsa-oaep-shal,
rsa-oaep-sha256, rsa-oaep-sha384, rsa-oaep-sha512,
aesl28-ccm-wrap, opaque-data, opaque-x509-certificate,
mgfl-shal, mgfl-sha256, mgfl-sha384, mgfl-sha512,
template-ssh, aesl28-yubico-otp,
aesl28-yubico-authentication, aesl192-yubico-otp,
aes256-yubico-otp, aesl92-ccm-wrap, aes256-ccm-wrap,
ecdsa-sha256, ecdsa-sha384, ecdsa-sha512, ed25519,
ecp224

31.17.3 Command Line Mode

$ yubihsm-shell -a get-device-info

246

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Fetch device info for currently connected device.

$ yubihsm-shell -a get-device-info

Version number: 2.0.0
Serial number: 2000000
Log used: 2/62

Supported algorithms: rsa-pkcsl-shal, rsa-pkcsl-sha256, rsa-pkcsl-sha384,
rsa-pkcsl-sha512, rsa-pss-shal, rsa-pss-sha256,
rsa-pss-sha384, rsa-pss-sha512, rsa2048, rsa3072,
rsad4096, ecp256, ecp384, ecp521, eck256, ecbp256,
ecbp384, ecbp512, hmac-shal, hmac-sha256, hmac-sha384,
hmac-sha512, ecdsa-shal, ecdh, rsa-oaep-shal,
rsa-oaep-sha256, rsa-oaep-sha384, rsa-oaep-sha512,
aes128-ccm-wrap, opaque-data, opaque-x509-certificate,
mgfl-shal, mgfl-sha256, mgfl-sha384, mgfl-sha512,
template-ssh, aes128-yubico-otp,
aes128-yubico-authentication, aesl92-yubico-otp,
aes256-yubico-otp, aesl92-ccm-wrap, aes256-ccm-wrap,
ecdsa-sha256, ecdsa-sha384, ecdsa-sha512, ed25519,
ecp224

31.17.4 Protocol Details

Command

Tc 0x06
Lc { LI}
Ve ={1I}

where —

I = Page index, can only be ® = general device info or 1 = part number. Optional and is only available with firmware
2.4 or higher (1 byte)

Response

Unspecified or page index 0:

Tr = 0x86
Lr = 9 + algorithms
Vr = VMajor || VMinor || VBuild || S || Ltotal || Lused || A

where —

VMajor = Major version number (1 byte)
VMinor = Minor version number (1 byte)
VBuild = Build version number (1 byte)
S = Serial number (4 bytes)

Ltotal = Log Store size expressed in number of log entries (1 byte)

31.17. DEVICE INFO Command 247

YubiHSM 2 User Guide

Lused = Log lines used (1 byte)
A = List of supported ALGORITHMS
Page index 1:

Tr = 0x86
Lr = 13
Vr = P
where —

P = Part number (13 byte)

31.18 ECHO Command

Return the byte sequence present within the data field, without any modification. Can be sent over an encrypted Session

or as a bare command.

31.18.1 Shell Example

Plain echo

yubihsm> plain echo 0x3c 10
Response (10 bytes):
3c3c3c3c3c3c3c3c 3c3c

Echo over session 0

yubihsm> echo 0 0x3c 10
Response (10 bytes):
3c3c3c3c3c3c3c3c 3c3c

31.18.2 Interactive Mode

Over Encrypted Session

yubihsm> echo e:session, b:byte, w:count

248

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Bare Command

yubihsm> plain echo b:byte, w:count

Parameters

* byte Required.
The byte to be echoed.
* count Required.
How many times the byte will be echoed.
* session
The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

Echo over session 0

yubihsm> echo 0 0x3c 10
Response (10 bytes):
33c3c3c3c3c3c3c3c 3c3c

Plain echo

yubihsm> plain echo 0x3c 10
Response (10 bytes):
3c3c3c3c3c3c3c3c 3c3c

31.18.3 Command Line Mode

This command is not available in command line mode.

31.18.4 Protocol Details

Command

Tc 0x01
Lc = LE
Vc = E

where —

E = Data to echo (1-2021 bytes)

31.18. ECHO Command

249

YubiHSM 2 User Guide

Response

Tr = 0x81
Lr = LE
Vr E

where —

E = Data to echo (1-2021 bytes)

31.19 ENCRYPT CBC Command

Available with firmware version 2.3.1 or later.

Encrypt data in CBC mode.

31.19.1 Interactive Mode

yubihsm> encrypt aescbc e:session,w:key_id,s:iv,i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID of the symmetric key to encrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

* iv Required.
Encryption initialization vector. 16 bytes in HEX format.
e data
Data to encrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with CTRL-D.
Possible Values: Data or - for stdin
Default Value: stdin
Input format: HEX
Output format: PEM

250 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Encrypt data using key 0x008c:

yubihsm> encrypt aescbc 0 0x008c 00000000000000000000000000000000,,
—c5cffalc2333£d824a86951cf602bcal
SGOOU4CT2pH2dnd967KyTU50gdI8edx] jO£3Yt529gGQ=

31.19.2 Command Line Mode

$ yubihsm-shell -a encrypt-aescbc -i <key_id> --iv <iv> [--in <data> --out <out> --
—authkey <authKeyID> -p <password>]

Parameters

e —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password will be prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the symmetric key to encrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

e --iv=STRING Required.
Encryption initialization vector. 16 bytes in HEX format
¢ —-in=STRING
Data to encrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with CTRL-D.
Possible Values: data or stdin
Default Value: stdin
Input format: HEX
e —-out=STRING
Encrypted data.
Possible Values: Path to file or stdout
Default Value: stdout

Output format: Binary

31.19. ENCRYPT CBC Command

251

YubiHSM 2 User Guide

Example

Encrypt data using key 0x008c:

$ yubihsm-shell -a encrypt-aescbc -i 0x008c --in c5cffalc2333fd824a86951cf602bcal --out..
—.data.enc

31.19.3 Protocol Details

Command

Tc = 0x72
Lc 2+ 16 + LD
Vc I || IV || D

where —

I = Object ID of the Asymmetric Key (2 bytes)

IV = Encryption initialization vector (IV) in HEX (16 bytes)
D = Data to encrypt (multiple of 16 bytes)

Response

Tr 0xf2
Lr = LE
Vr = E

where —

E = Encrypted data

31.20 ENCRYPT ECB Command

Available with firmware version 2.3.1 or later.

Encrypt data in ECB mode.

31.20.1 Interactive Mode

yubihsm> encrypt aesecb e:session,w:key_id,i:data=-

252 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

e data

Example

Object ID of the symmetric key to encrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

Data to encrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with CTRL-D.
Possible Values: Data to sign or - for stdin

Default Value: stdin

Input format: HEX

Output format: PEM

Encrypt data using key 0x0064:

yubihsm> encrypt aesecb 0 0x0064 c5cffalc2333fd824a86951cf602bcal..
—SGO0U4ACT2pH2dnd967KyTQSIdIILAhWsmhdFIkHAZMQ=

31.20.2 Command Line Mode

$ yubihsm-shell -a encrypt-aesecb -i <key_id> [--in <data> --out <out> --authkey
—»<authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--password=STRING Required.

The password to authentication key used to open a session. The password will be prompted for if not
specified.

--object-id=SHORT Required.

Object ID of the symmetric key to encrypt with. Object ID is a 2 bytes integer. Can be specified in
hex or decimal.

e --in=STRING

31.20. ENCRYPT ECB Command

253

YubiHSM 2 User Guide

Data to encrypt. Multiple of 16 bytes. When using stdin, the end of input is marked with
CTRL-D.

Possible Values: data or stdin
Default Value: stdin
Input format: HEX

¢ —-out=STRING
Encrypted data.
Possible Value: Path to file or stdout
Default Value: stdout

Output format: Binary

Example

Encrypt data using key 0x0064:

$ yubihsm-shell -a encrypt-aesecb -i 0x0064 --in c5cffalc2333£fd824a86951cf602bcal --out.
—data.enc

31.20.3 Protocol Details

Command

0x70
2 + LD
I||D

Tc
Lc
Vc

where —
I = Object ID of the symmetric Key (2 bytes)
D = Data to encrypt (multiple of 16 bytes)

Response

Tr 0xf0
Lr = LE
Vr E

where —

E = Encrypted data

254 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.21 EXPORT WRAPPED Command

Retrieves an Object under wrap from the device. The Object is encrypted using AES-CCM with a 16 bytes MAC and
a 13 bytes nonce.

Both the Wrap Key and the Authentication Key must have the capability export-wrapped and the wrapped object
must have the capability exportable-under-wrap.

For YubiHSM devices with firmware version 2.4 or later, this command has been extended to enable exporting ed25519
keys with the seed for a private key. To ensure backward compatibility with older versions of the HSM, the default is
to not export the seed. Importing such a legacy format results in an all-zero seed if such a key is exported in the future.

31.21.1 Shell Example

Fetch the Asymmetric Key 8x997e encrypted with Wrap Key 0xc£94 and store the result in the file key . enc.

yubihsm> get wrapped 0 0xcf94 asymmetric-key 0x997e 0 key.enc

31.21.2 Interactive Mode

yubihsm> get wrapped e:session, w:wrapkey_id, t:type, w:id, b:include_seed=0, F:file=-

Parameters

o file
Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdin

* id Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ include_seed

Export ED25519 key with its seed. Default is 0, which does not export the seed for a privacy key.
* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* type Required.

Type of the object to be wrapped.

Possible Values: asymmetric-key, symmetric-key, authentication-key, hmac-key, opaque, otp-aead-
key, template, wrap-key, public-wrap-key

» wrapkey_id Required.
Wrap key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal

31.21. EXPORT WRAPPED Command 255

YubiHSM 2 User Guide

Example

Fetch the Asymmetric Key 0x997e encrypted with Wrap Key 0xc£94 and store the result in the file key. enc.

yubihsm> get wrapped 0 0xcf94 asymmetric-key 0x997e 0 key.enc

31.21.3 Command Line Mode

$ } --wrap-id <wrapkey_id> -t <type> -i <object_id> [--include-seed --authkey
—.<authKeyID> -p <password> --out <out_data>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--object-id=SHORT Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e --include_seed

Export ED25519 key with its seed. Default is not to.

e ——out=STRING

Encrypted/wrapped object.

Possible Values: Path to file or stdout
Default Value: stdout
--password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified

--object-type=STRING Required.
Type of the object to be wrapped.

Possible Values: symmetric-key, symmetric-key, authentication-key, hmac-key, opaque, otp-aead-
key, template, wrap-key, public-wrap-key

e --wrap-id=INT Required.

Wrap key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.

256

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Fetch the Asymmetric Key 0x997e encrypted with Wrap Key 0xc£94 and store the result in the file key. enc.

$ yubihsm-shell -a get-wrapped --wrap-id 0xcf94 -t symmetric-key -i 0x997e --out key.enc

31.21.4 Protocol Details

Command

Tc = 0x4a
Lc=2+1+2 {+ 1%}
Ve=TIw || T || Io { || S}
where —

Iw = Object ID of Wrap Key to use (2 bytes)

T = Type, Objects of Object to wrap (1 byte)

TIo = Object ID of Object to wrap (2 bytes)

S = 1 to include seed when exporting ED25519 key, 0 otherwise. Optional with firmware 2.4 or higher (1 byte)

Response

Tr = 0xca
Lr 13 + LR
Vr N || R

where —
N = Nonce used for this wrap (13 bytes)
R = Wrapped data (Length dependent on object)

31.22 EXPORT RSA WRAPPED Command

Available on YubiHSM devices with firmware version 2.4 or higher.

Both the Public Wrap Key and the Authentication Key must have the capability export-wrapped and the wrapped
object must have the capability exportable-under-wrap.

Retrieves an Object under RSA wrap from the device. The wrapped object is serialized using the YubiHSM-internal
format.

31.22. EXPORT RSA WRAPPED Command 257

YubiHSM 2 User Guide

31.22.1 Interactive Mode

yubihsm> get rsa_wrapped e:session, w:wrapkey_id, t:type, w:id, a:aes=aes256, a:hash-=rsa-
-.0aep-sha256, a:mgfl-mgfl-sha256, F:file=-

Parameters

* aes
Algorithm of the ephemeral AES key
Possible Values: aes128, aes192 or aes256
Default Value: aes256

* file
Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdout
Format: Binary

* hash
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256

* id Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* mgfl
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgf1-sha384 or mgf1-sha512
Default Value: mgf1-sha256
* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* type Required.
Type of the object to be wrapped.

Possible Values: asymmetric-key, symmetric-key, authentication-key, hmac-key, opaque, otp-aead-
key, template, wrap-key, public-wrap-key

* wrapkey_id Required.
Public Wrap Key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal

258 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Fetch the Asymmetric Key 0x997e encrypted with RSA Public Wrap Key 0xcf94 and store the result in the file
object.enc.

yubihsm> get rsa_wrapped 0 0xcf94 asymmetric-key 0x997e aes192 rsa-oaep-sha384 mgfl-shal..
—,object.enc

31.22.2 Command Line Mode

$ yubihsm-shell -a get-rsa-wrapped --wrap-id <wrapkey_id> -t <type> -i <object_id> [-A
—.<aes> --oaep <oaep> --mgfl <mgfl> --authkey <authKeyID> -p <password> --out <out_data>.
=]

Parameters

e -A, --algorithm=STRING
Algorithm of the ephemeral AES key
Possible Values: aes128, aes192 or aes256
Default Value: aes256

e —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
e -i, --object-id=SHORT Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e --mgf1=STRING
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgfl-sha256, mgfl-sha384 or mgf1-sha512
Default Value: mgf1-sha256
¢ --0aep=STRING
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
* --out=STRING
Encrypted/wrapped object.
Possible Values: Path to file or stdout
Default Value: stdout

Format: Binary

31.22. EXPORT RSA WRAPPED Command 259

YubiHSM 2 User Guide

* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified

* -t, --object-type=STRING Required.
Type of the object to be wrapped.

Possible Values: symmetric-key, symmetric-key, authentication-key, hmac-key, opaque, otp-aead-
key, template, wrap-key, public-wrap-key

e --wrap-id=INT Required.
Wrap key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
Example

Fetch the Asymmetric Key 0x997e encrypted with Wrap Key 0xc£94 and store the result in the file object.enc.

$ yubihsm-shell -a get-rsa-wrapped --wrap-id 0xcf94 -t symmetric-key -i 0x997e -A aesl192.
—--oaep rsa-oaep-sha384 --mgfl mgfl-shal --out object.enc

31.22.3 Protocol Details

Command

Tc = 0x76
lc=2+1+2+ 1+ 1+ 1+ LHL

Vc =Iw || To || Ti || Ae || H || M || LH
where —

Iw = Object ID of Wrap Key to use (2 bytes)

To = Type, Objects of Object to wrap (1 byte)

Ti = Object ID of Object to wrap (2 bytes)

Ae = ALGORITHMS of the ephemeral AES key (1 byte)
H=ALGORITHMS to use for OAEP label (1 byte)

M = ALGORITHMS to use for MGF1 (1 byte)

LH = The label digest (Length dependent on OAEP algorithm)

Response

Tr = 0xf6
Lr = LR
Vr R

where —

R = RSA wrapped data (Length dependent on object)

260 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.23 EXPORT RSA WRAPPED KEY Command

Available on YubiHSM devices with firmware version 2.4 or higher.

Both the Public Wrap Key and the Authentication Key must have the capability export-wrapped and the wrapped
object must have the capability exportable-under-wrap.

Wrap an (a)symmetric key. Only asymmetric and symmetric key objects are valid targets. Asymmetric keys are seri-
alized as PKCS#8

31.23.1 Interactive Mode

yubihsm> get rsa_wrapped_key e:session, w:wrapkey_id, t:type, w:id, a:aes=aes256,..
—a:hash=rsa-oaep-sha256, a:mgfl=-mgfl-sha256, F:file=-

Parameters

* aes
Algorithm of the ephemeral AES key
Possible Values: aes128, aes192 or aes256
Default Value: aes256
* file
Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdin
Format: Binary
* hash
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
* id Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* mgfl
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgfl-sha384 or mgfl-sha512
Default Value: mgf1-sha256
* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* type Required.

31.23. EXPORT RSA WRAPPED KEY Command 261

YubiHSM 2 User Guide

Type of the object to be wrapped.
Possible Values: asymmetric-key, symmetric-key
» wrapkey_id Required.
Wrap key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal

Example

Fetch the Asymmetric Key 0x997e encrypted with RSA Public Wrap Key 0xc£94 and store the result in the file key.
enc.

yubihsm> get rsa_wrapped_key 0 0xcf94 asymmetric-key 0x997e aesl92 rsa-oaep-sha384 mgfl-
—shal key.enc

31.23.2 Command Line Mode

$ yubihsm-shell -a get-rsa-wrapped-key --wrap-id <wrapkey_id> -t <type> -i <object_id> [.
—.-A <aes> --oaep <oaep> --mgfl <mgfl> --authkey <authKeyID> -p <password> --out <out_
—data>]

Parameters

e -A, --algorithm=STRING
Algorithm of the ephemeral AES key
Possible Values: aes128, aes192 or aes256
Default Value: aes256

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
e -i, --object-id=SHORT Required.

Object ID of the object to be wrapped. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e --mgf1=STRING
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgf1-sha384 or mgf1-sha512
Default Value: mgf1-sha256
+ --0aep=STRING
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
e —-out=STRING

262 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Encrypted/wrapped object.
Possible Values: Path to file or stdout
Default Value: stdout
Format: Binary
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified

* -t, --object-type=STRING Required.
Type of the object to be wrapped.
Possible Values: symmetric-key, symmetric-key
* —-wrap-id=INT Required.
Wrap key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.

Example

Fetch the Asymmetric Key 8x997e encrypted with Wrap Key 0xc£94 and store the result in the file key. enc.

$ yubihsm-shell -a get-rsa-wrapped-key --wrap-id 0xcf94 -t symmetric-key -i 0x997e -A.
—aesl92 --oaep rsa-oaep-sha384 --mgfl mgfl-shal --out key.enc

31.23.3 Protocol Details

Command

Tc = 0x74
lc=2+1+2+ 1+ 1+ 1+ LHL

Vc =Iw || To || Ti || Ae || H || M || LH
where —

Iw = Object ID of Wrap Key to use (2 bytes)

To = Type, Objects of Object to wrap (1 byte)

Ti = Object ID of Object to wrap (2 bytes)

Ae = ALGORITHMS of the ephemeral AES key (1 byte)
H=ALGORITHMS to use for OAEP label (1 byte)

M = ALGORITHMS to use for MGF1 (1 byte)

LH = The label digest (Length dependent on OAEP algorithm)

31.23. EXPORT RSA WRAPPED KEY Command

263

YubiHSM 2 User Guide

Response

Tr = 0xf4
Lr = LR
Vr R

where —

R = RSA wrapped key (Length dependent on key)

31.24 GENERATE ASYMMETRIC KEY Command

Generate an Asymmetric Key in the device.

31.24.1 Shell Example

Generate a new key using secp256r1 in the device.

yubihsm> generate asymmetric ® O eckey 1 sign-ecdsa ecp256
Generated Asymmetric key 0x2846

31.24.2 Interactive Mode

yubihsm> generate asymmetric e:session, w:key_id, s:label, d:domains, c:capabilities,..
—a:algorithm

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Key label. Can be empty.

Possible Value: Maximum of 40 characters string.
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

* capabilities Required.

264 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, sign-pkcs, sign-pss, sign-ecdsa, sign-eddsa, decrypt-pkcs, decrypt-oaep,
derive-ecdh, exportable-under-wrap, sign-ssh-certificate, sign-attestation-certificate

* algorithm Required.

Example

Key algorithm.

Possible Values: rsa2048, rsa3072, rsa4096, ecp256, ecp384, ecp521, eck256, ecbp256, ecbp384,
ecbp512, ed25519, ecp224

Generate a new key using secp256r1 in the device.

yubihsm> generate asymmetric ® O eckey 1 sign-ecdsa ecp256
Generated Asymmetric key 0x2846

31.24.3 Command Line Mode

$ yubihsm-shell -a generate-asymmetric-key -i <key_id> -1 <label> -d <domains> -c
-.<capabilities> -A <algorithm> [--authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

* b,
. _i’
. _1,
. _d’
e -C,

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--password=STRING

Required. The password to authentication key used to open a session. The password is prompted for
if not specified.

--object-id=SHORT

Required. Object ID of the asymmetric key. Use 0 to generate Object ID. Object ID is a 2 bytes
integer. Can be specified in hex or decimal.

--1abel=STRING Required.
Key label. Maximum of 40 characters string. Can be empty.
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING Required.

31.24. GENERATE ASYMMETRIC KEY Command

265

YubiHSM 2 User Guide

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, sign-pkcs, sign-pss, sign-ecdsa, sign-eddsa, decrypt-pkcs, decrypt-oaep,
derive-ecdh, exportable-under-wrap, sign-ssh-certificate, sign-attestation-certificate

e -A, --algorithm=STRING Required.
Key algorithm.

Possible Values: rsa2048, rsa3072, rsa4096, ecp256, ecp384, ecp521, eck256, ecbp256, ecbp384,
ecbp512, ed25519, ecp224

Example

Generate a new key using secp256r1 in the device.

$ yubihsm-shell -a generate-asymmetric-key -i ® -1 eckey -d 1 -c sign-ecdsa -A ecp256
Generated Asymmetric key 0x2846

31.24.4 Protocol Details

Command
Tc = 0x46
Lc =2 +40 + 2 + 8 + 1

Ve=I || LIIDIJICIIA

Generate an Asymmetric key-pair with a given ID. Each parameter has a fixed length and the order is compulsory.
where —

I = Object ID of the Asymmetric Key (2 bytes)

L = Label (40 bytes)

D = Domain (2 bytes)

C = Effective Capabilities (Tying It All Together) (8 bytes)

A =ALGORITHMS (1 byte)

Response

Tr = 0xcb
Lr = 2
Vr = 1

where —

I = Object ID of the created Asymmetric Key (2 bytes)

266 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.25 GENERATE HMAC KEY Command

Generate an HMAC Key in the device.

31.25.1 Shell Example

Generate an HMAC-SHAS12 key.

yubihsm> generate hmackey 0 0 hmackey 1 sign-hmac:verify-hmac hmac-sha512
Generated HMAC key 0xa9bf

31.25.2 Interactive Mode

yubihsm> generate hmackey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—a:algorithm

Parameters

* session Required.
The ID of the authenticated session to send the command over. 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string.
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key.Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, sign-hmac, verify-hmac, exportable-under-wrap
 Algorithm Required.

Key algorithm.

Possible Values: hmac-shal, hmac-sha256, hmac-sha384, hmac-sha512

31.25. GENERATE HMAC KEY Command 267

YubiHSM 2 User Guide

Example

Generate an HMAC-SHAS12 key.

yubihsm> generate hmackey ©® ® hmackey 1 sign-hmac:verify-hmac hmac-sha512
Generated HMAC key 0xa9bf

31.25.3 Command Line Mode

$ yubihsm-shell -a generate-hmac-key -i <key_id> -1 <label> -d <domains> -c
—.<capabilities> -A <algorithm> [--authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

* -i, --object-id=SHORT Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e -1, --1abel=STRING Required.
Key label. Can be empty.

Possible Values: Maximum of 40 characters string

.
|
[oH

--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
e -c, --capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, sign-hmac, verify-hmac, exportable-under-wrap
e -A, --algorithm=STRING Required.

Key algorithm.

Possible Values: hmac-shal, hmac-sha256, hmac-sha384, hmac-sha512

268 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Generate a new key using secp256r1 in the device:

$ yubihsm-shell -a generate-hmac-key -i 0 -1 hmackey -d 1 -c sign-hmac,verify-hmac -A.
—hmac-sha512
Generated HMAC key 0xa9bf

31.25.4 Protocol Details

Command
Tc = 0x5a
Lc =2+ 40 + 2 + 8 + 1

Ve =TI [[LJIDIJ]CIIA

where —

I = Object ID of the HMAC Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

Response

Tr = Oxda
Lr = 2
Vr = 1

where —

I = Object ID

31.26 GENERATE OTP AEAD KEY Command

Generate an OTP AEAD Key for Yubico OTP decryption.

31.26.1 Shell Example

Generate a new AES-256 OTP AEAD Key that can decrypt Yubico OTPs and create new AEADs.

yubihsm> generate otpaeadkey ® 0 otpaeadkey 1 decrypt-otp,
create-otp-aead aes256-yubico-otp 0x01020304
Generated OTP AEAD key 0x027c

31.26. GENERATE OTP AEAD KEY Command

269

YubiHSM 2 User Guide

31.26.2 Interactive Mode

yubihsm> generate hmackey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—a:algorithm, u:nonce_id

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Posible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.
Key label. Maximum of 40 characters string. Can be empty
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16.
* capabilities Required.

Capabilities of the key. Multiple capabilities can be separated by comma , or colon : with no spaces
between.

Possible Values: none, create-otp-aead, decrypt-otp, randomize-otp-aead, rewrap-from-otp-aead-key,
rewrap-to-otp-aead-key, exportable-under-wrap Use none to include no capability.

* algorithm Required.
Key algorithm. Multiple capabilities can be separated by comma , or colon : with no spaces between.
Possble Values: aes128-yubico-otp, aes192-yubico-otp, aes256-yubico-otp

* nonce_id Required.

OTP nonce. 4 bytes

Example

Generate a new AES-256 OTP AEAD Key that can decrypt Yubico OTPs and create new AEADs.

yubihsm> generate otpaeadkey 0 0 otpaeadkey 1 decrypt-otp,create-otp-aead aes256-yubico-
—otp 0x01020304
Generated OTP AEAD key 0x027c

270 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.26.3 Command Line Mode

$ yubihsm-shell -a generate-otp-aead-key -i <key_id> -1 <label> -d <domains> -c
—<capabilities> -A <algorithm> --nonce <nonce_id> [--authkey <authKeyID> -p <password>]

Parameters

--authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

--object-id=SHORT Required.

Object ID of the asymmetric key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

--1abel=STRING Required.

Key label. Can be empty

Possible Values: Maximum of 40 characters string.
--domains=STRING Required.

Domains where the key will be accessible.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Use all to indicate all domains. Multiple domains can be separated by comma , or colon : with no
spaces between.

--capabilities=STRING Required.

Capabilities of the key. Use none to include no capability.Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, create-otp-aead, decrypt-otp, randomize-otp-aead, rewrap-from-otp-aead-key,
rewrap-to-otp-aead-key, exportable-under-wrap

--algorithm=STRING Required.
Key Igorithm
Possible Values: aes128-yubico-otp, aes192-yubico-otp, aes256-yubico-otp

--nonce=INT Required.

OTP nonce

31.26. GENERATE OTP AEAD KEY Command

271

YubiHSM 2 User Guide

Example

Generate a new AES-256 OTP AEAD Key that can decrypt Yubico OTPs and create new AEADs.

$ yubihsm-shell -a generate-otp-aead-key -i ® -1 otpaeadkey -d 1 -c decrypt-otp,create-
—otp-aead -A aes256-yubico-otp --nonce 0x01020304
Generated OTP AEAD key 0x027c

31.26.4 Protocol Details

Command
Tc = 0x66
Lc =2+ 40 + 2 + 8 + 1 + 4

Ve=I || L[IDIJICIIAIIN

where —

I = Object ID of the OTP AEAD Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

N = Nonce ID (4 bytes)

Response

Tr = 0xeb
L = 2
Vr = T

where —

I = Object ID of the created OTP AEAD Key (2 bytes)

31.27 GENERATE SYMMETRIC KEY Command

Available with firmware version 2.3.1 or later.

Generate a symmetric Key in the device.

272 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.27.1 Interactive Mode

yubihsm> generate symmetric e:session,w:key_id,s:label,d:domains,c:capabilities,
—a:algorithm

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
, or : with no spaces between

Possible Values: none, decrypt-ecb, encrypt-ecb, decrypt-cbc, encrypt-cbe, exportable-under-wrap
* algorithm Required.

Key algorithm

Possible Values: aes128, aes192, aes256

Example

Generate a new key using aes256 in the device:

yubihsm> generate symmetric ©® O aeskey 1 encrypt-ecb,decrypt-ecb aes256
Generated symmetric key 0xc040

31.27. GENERATE SYMMETRIC KEY Command 273

YubiHSM 2 User Guide

31.27.2 Command Line Mode

$ yubihsm-shell -a generate-symmetric-key -i <key_id> -1 <label> -d <domains> -c
—<capabilities> -A <algorithm> [--authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password will be prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the asymmetric key. Use ‘0’ to generate Object ID. Object ID is a 2 bytes integer. Can
be specified in hex or decimal.

e -1, --1abel=STRING Required.
Key label. Can be empty.

Possible Values: Maximum of 40 characters string

.
|
Q.

--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
e -c, --capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
, or : with no spaces between

Possible Values: none, encrypt-ecb, decrypt-ecb, encrypt-cbc, decrypt-cbe, exportable-under-wrap
e -A, --algorithm=STRING Required.

Key algorithm

Possible Values: aes128, aes192, aes256

Example

Generate a new key using secp256r1 in the device:

$ yubihsm-shell -a generate-symmetric-key -1 aeskey -d 1 -c encrypt-ecb,decrypt-ecb -A.
—aes256
Generated symmetric key 0xc040

274 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.27.3 Protocol Details

Command
Tc = 0x6e
Lc =2 +40 + 2 + 8 + 1

Ve=I |[[LJ[IDIICIIA

Generate a symmetric key with a given ID. Each parameter has a fixed length and the order is compulsory.

where —

I = Object ID of the symmetric Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

Response

Tr Oxee
e = 2
Vr = 1

where —

I = Object ID of the created symmetric Key (2 bytes)

31.28 GENERATE WRAP KEY Command

Generate a Wrap Key that can be used for export, import, wrap data and unwrap data.

31.28.1 Shell Example

Generate a new Wrap Key that can be used for wrap and unwrap.

yubihsm> generate wrapkey 0 0 wrapkey 1 wrap-data:unwrap-data none
aes256-ccm-wrap
Generated Wrap key 0x5b3a

31.28. GENERATE WRAP KEY Command

275

YubiHSM 2 User Guide

31.28.2 Interactive Mode

yubihsm> generate hmackey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—c:delegated_capabilities, a:algorithm

Parameters

* Session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

» Label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string.
* Domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

* delegated_capabilities Required.

Delegated capabilities. Use all to include all capabilities. Use none to include no capability. Mul-
tiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkes, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-acad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

 Algorithm Required.
Key algorithm.

Possible Values: aes128-ccm-wrap, aes192-ccm-wrap, aes256-ccm-wrap, rsa2048, rsa3072, rsa4096

276 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Generate a new Wrap Key that can be used for wrap and unwrap.

yubihsm> generate wrapkey 0 0 wrapkey 1 wrap-data:unwrap-data none aes256-ccm-wrap
Generated Wrap key 0x5b3a

31.28.3 Command Line Mode

$ yubihsm-shell -a generate-wrap-key -i <key_id> -1 <label> -d <domains> -c
—.<capabilities> --delegated <delegated_capabilities> -A <algorithm> [--authkey
—.<authKeyID> -p <password>]

Parameters

--authkey=INT

-1,

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal

Default Value: 1
--password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified

--object-id=SHORT Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

--1abel=STRING Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

--delegated=STRING

Delegated capabilities of kry. Use all to include all capabilities. Use none to include no capability.
Multiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkes, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,

31.28. GENERATE WRAP KEY Command

277

YubiHSM 2 User Guide

delete-otp-acad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-acad-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

Default Value: none
e -A, --algorithm=STRING Required.
Key algorithm.

Possible Values: aes128-ccm-wrap, aes192-ccm-wrap, aes256-ccm-wrap

Example

Generate a new Wrap Key that can be used for wrap and unwrap.

$ yubihsm-shell -a generate-wrap-key -i 0 -1 wrapkey -d 1 -c wrap-data:unwrap-data -A.
—,aes256-ccm-wrap
Generated Wrap key 0x5b3a

31.28.4 Protocol Details

Command

Tc = 0x5b

Lc =2 +40 + 2 + 8+ 1 + 8
Ve=I || LI|[DJ]CI|]AT]l DC
where —

I = Object ID of the Wrap Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

DC = Delegated Capability (8 bytes)

Response

Tr 0xdb
L7 = 2
Vr = 1

where —

I = Object ID of created Wrap Key (2 bytes)

278 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.29 GET DEVICE PUBLIC KEY Command

Available with firmware version 2.3.1 or later.

Fetch the device public key to use with asymmetric authentication to the device. This is end as a bare command and
not over an encrypted session.

31.29.1 Example

Get device public key:

yubihsm> get devicepubkey

MFkwEwYHK0ZIzjOCAQYIK0ZIzjODAQcDQUAEfSE6ZN590NnsOf
9C8VGNym+0BgnW05mjJZ]5Z9kkbpMThLwk j sqKOhgKI+S1fv3o
XmrcwVzUstLAkQe1HdC/uA==

31.29.2 Protocol Details

Command
Tc = 0x0a

Lc =0

Ve = 0
Response
Tr = 0x8a

Lr =1 + 64
Vr = A | | K
where —

A =ALGORITHMS (1 byte)
K = Uncompressed EC-P256 public key (64 bytes)
The algorithm will currently always be ec-p256-yubico-authentication.

The uncompressed EC key marker is omitted (hence the 64 bytes), similarly to how other EC keys are handled.

31.29. GET DEVICE PUBLIC KEY Command 279

YubiHSM 2 User Guide

31.30 GET LOG ENTRIES Command

Fetch device audit log. Fetch all current entries from the device Log Store.

31.30.1 Shell Example

yubihsm> audit get 0

0 unlogged boots found

® unlogged authentications found

Found 6 items

item: 46 -- cmd: Ox4b -- length:
-- target

234 --

key: 0xcf94 -- second key: 0x997e -- result:

-- hash: 415f51f1f035alb713e730e4464e4033
item: 47 -- cmd: 0x4c -- length: 77 —-
-- target

key: 0xaff7 -- second key: Oxffff -- result:

-- hash: 5496a60d478c2b9c801d8d32ca66b554

item: 48 -- cmd: 0x00 -- length: 0 -
-- target

key: 0x0000 -- second key: 0x0000 -- result:
14ac7747ba9bbb243cfc70befeb5349b

item: 49 -- cmd: 0x03 -- length: 10 --
-- target

key: 0x0001 -- second key: Oxffff -- result:
b20a8£25c025e693a8e869b433294a20

item: 50 -- cmd: 0x04 -- length: 17 --
-- target

key: 0x0001 -- second key: Oxffff -- result:
ebfae425c319ac7a0afbb8b92597de7c

item: 51 -- cmd: 0x67 -- length: 2 —-
-- target

key: Oxffff -- second key: Oxffff -- result:

2e395d1b706668737e1d2215813db47e

session key: 0x0001
Oxcb -- tick: 335725
session key: 0x0001
Oxcc -- tick: 351714
session key: Oxffff

0x00 -- tick: O -- hash:
session key: Oxffff

0x83 -- tick: 139 -- hash:
session key: Oxffff

0x84 -- tick: 139 -- hash:
session key: 0x0001

Oxe7 -- tick: 697 -- hash:

31.30.2 Interactive Mode

yubihsm> audit get e:session, F:file=-

Parameters

* Session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* File
Log entries. Default output format: ASCII.

Possible Values: Path to file or - for stdout

280

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Default Value: stdout

Example

yubihsm> audit get 0

0® unlogged boots found

0 unlogged authentications found

Found 6 items

item: 46 -- cmd: 0x4b -- length: 234 -- session key: 0x0001 -- target key: 0xcf94.
—-- second key: 0x997e -- result: Oxcb -- tick: 335725 -- hash:.
—415£51£1£035a1b713e730e4464e4033

item: 47 -- cmd: Ox4c -- length: 77 -- session key: 0x0001 -- target key: Oxaff7.
—-- second key: Oxffff -- result: Oxcc -- tick: 351714 -- hash:.
—»5496a60d478c2b9c801d8d32ca66b554

item: 48 -- cmd: 0x00 -- length: 0O -- session key: Oxffff -- target key:.
—0x0000 -- second key: 0x0000 -- result: 0x00 -- tick: O -- hash:.
—14ac7747ba9bbb243cfc70befeb5349b

item: 49 -- cmd: 0x03 -- length: 10 -- session key: Oxffff -- target key: 0x0001.
—-- second key: Oxffff -- result: 0x83 -- tick: 139 -- hash:.
—b20a8£25c025e693a8e869b433294a20

item: 50 -- cmd: 0x04 -- length: 17 -- session key: Oxffff -- target key: 0x0001.
—-- second key: Oxffff -- result: 0x84 -- tick: 139 -- hash:.
—ebfae425c319ac7a®afbb8b92597de7c

item: 51 -- cmd: 0x67 -- length: 2 -- session key: 0x0001 -- target key:..
—0xffff -- second key: Oxffff -- result: 0xe7 -- tick: 697 -- hash:.
—2e395d1b706668737e1d2215813db47e

31.30.3 Command Line Mode

$ yubihsm-shell -a get-logs --out <file> [--authkey <authKeyID> -p <password>]

Parameters

¢ —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

¢ —-out=STRING
Log entries.
Possible Values: Path to file or stdout
Default Value: stdout

e —--outformat=ENUM

31.30. GET LOG ENTRIES Command 281

YubiHSM 2 User Guide

Output data format.
Possible Values: default, base64, binary, PEM, hex, ASCII
Default Format: ASCII A

Example

$ yubihsm-shell -a get-logs

0® unlogged boots found

0® unlogged authentications found

Found 6 items

item: 46 -- cmd: 0x4b -- length: 234 -- session key: 0x0001 -- target key: 0xcf94.
—-- second key: 0x997e -- result: 0xcb -- tick: 335725 -- hash:.
—415f51£1f035a1b713e730e4464e4033

item: 47 -- cmd: 0x4c -- length: 77 -- session key: 0x0001 -- target key: Oxaff7.
—-- second key: Oxffff -- result: Oxcc -- tick: 351714 -- hash:.,
—5496a60d478c2b9c801d8d32cab6b554

item: 48 -- cmd: 0x00 -- length: 0 -- session key: Oxffff -- target key:.
—0x0000 -- second key: 0x0000 -- result: 0x00 -- tick: O® -- hash:.
—14ac7747ba9%bbb243cfc70befeb5349b

item: 49 -- cmd: 0x03 -- length: 10 -- session key: Oxffff -- target key: 0x0001.
—-- second key: Oxffff -- result: 0x83 -- tick: 139 -- hash:.
—b20a8£25c025e693a8e869b433294a20

item: 50 -- cmd: 0x04 -- length: 17 -- session key: Oxffff -- target key: 0x0001.
—.-- second key: Oxffff -- result: 0x84 -- tick: 139 -- hash:.
—ebfae425c319ac7a0afbb8b92597de7c

item: 51 -- cmd: 0x67 -- length: 2 -- session key: 0x0001 -- target key:.
0xffff -- second key: Oxffff -- result: 0xe7 -- tick: 697 -- hash:.
—,2€395d1b706668737e1d2215813db47e

31.30.4 Protocol Details

Command

Tc = 0x4d

Lc =0

Ve =0

Response

Tr = Oxcd

Lr =2 +2+ 1+ (N * 32)

Vr =B || O || N || E1 || E2 || ... || EN
where —

B = Number of unlogged boot events (if the log buffer is full and audit enforce is set) (2 bytes)
0 = Number of unlogged authentication events (if the log buffer is full and audit enforce is set) (2 bytes)

N = Number of elements in the list (1 byte)

282 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Ei = Generic log entry composed of:
* Command number (two bytes)
* Command ID (one byte)
e Command length (two bytes)
* ID of the originating session’s authentication key (two bytes)
* Target key affected by the command (two bytes)
¢ Secondary key if the command affected more than one key (two bytes)
* Result of the command on success or an error code if unsuccessful (one byte)
 Systick when the command was processed (4 bytes)
* Digest (16 bytes)

The digest is computed as trunc(16, SHA256(Ei.Data || trunc(16, Ei-1.Digest))). For the initial log en-
try, a random string of 32 bytes is used, instead of the digest of the previous message.

When the device initializes after a reset, a log entry with all fields set to 0x£f is logged.

When the device boots up, a log entry with all fields set to 0x00 is logged.

31.31 GET OBJECT INFO Command

Fetch all metadata about an Objects.

31.31.1 Shell Example

Get Object info for Asymmetric Key with ID 0x1el5.

yubihsm> get objectinfo 0 0xlel5 asymmetric-key

id: Oxlel5, type: asymmetric-key, algorithm: rsa2048, label: "rsakey",

length: 896, domains: 1, sequence: 0, origin: imported, capabilities:
sign-pkcs

31.31.2 Interactive Mode

yubihsm> get objectinfo e:session, w:id, t:type

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Value: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* id Required.

Object ID of the object to delete. Object ID is a 2 bytes integer. Can be specified in hex or decimal
* type Required.

31.31. GET OBJECT INFO Command 283

YubiHSM 2 User Guide

Type of the object to delete.

Possible Values: asymmetric-key, authentication-key, hmac-key, opaque, otp-aead-key, template,
wrap-key

Example

Get Object info for Asymmetric Key with ID 0x1el5.

yubihsm> get objectinfo 0 0xlel5 asymmetric-key
id: Oxlel5, type: asymmetric-key, algorithm: rsa2048, label: "rsakey", length: 896,.
—.domains: 1, sequence: 0, origin: imported, capabilities: sign-pkcs

31.31.3 Command Line Mode

$ yubihsm-shell -a get-object-info -i <id> -t <type> [--authkey <authKeyID> -p
—.<password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the object to delete. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* -t, --object-type=STRING Required.

Type of the object to delete.

Possible Values: asymmetric-key, authentication-key, hmac-key, opaque, otp-aead-key, template,
wrap-key

Example

Get Object info for Asymmetric Key with ID 0x1el5.

$ yubihsm-shell -a get-object-info -i Oxlel5 -t asymmetric-key

284 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.31.4 Protocol Details

Command

Tc = Ox4e
Lc 2 +1
Vc I || T

where —
I = Object ID (2 bytes)
T =Type, Objects (1 byte)

Response
Tr = 0xce
Lr =8+2+2+2+1+1+1+1+ 40 + 8

Ve=C || T [N[IDI|]TIIAIIlSIIOIILYIIDC

where —

C = Capability (8 bytes)

I = Object ID (2 bytes)

N = Object Length (2 bytes)
D = Domain (2 bytes)

T = Type, Objects (1 byte)
A =ALGORITHMS (1 byte)
S = Sequence (1 byte)

0 = Origin (1 byte)

L = Label (40 bytes)

DC = Delegated Capability (8 bytes)

31.32 GET OPAQUE Command

Retrieve an Opaque Object (like an X.509 certificate) from the device.

If an opaque object with algorithm opaque-x509-certificate is stored after being compressed, the certificate data
is decompressed after it has been retrieved from the device.

31.32. GET OPAQUE Command 285

YubiHSM 2 User Guide

31.32.1 Shell Example

Fetch Opaque Object ®xe255 and store in the file cert.der.

yubihsm> get opaque 0 0xe255 cert.der

31.32.2 Interactive Mode

yubihsm> get opaque e:session, w:object_id, F:file=-

Parameters

* Session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* object_id Required.

Opaque Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* File

Value of Opaque object. Default output format: binary (DER). If object algorithm is opaque-x509-
certificate, the output will be an X509Certificate.

Possible Values: Path to file or - for stdout
Default Value: stdout

Example

Fetch Opaque Object ®xe255 and store in the file cert.der.

yubihsm> get opaque 0 0xe255 cert.der

31.32.3 Command Line Mode

$ yubihsm-shell -a get-opaque -i <object_id> [--out <file> --outformat <format> --
—authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

286 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

e -i, --object-id=SHORT Required.
Opaque Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
e —-out=STRING

Value of Opaque object. Default output format: binary (DER). If object algorithm is opaque-x509-
certificate, the output will be an X509Certificate.

Possible Values: Path to file or stdout
Default Value: stdout
e ——outformat=ENUM
Output data format.
Possible Values: binary, PEM

Example

Fetch Opaque Object 0xe255 and store in the file cert.pem.

$ yubihsm-shell -a get-opaque -i 0xe255 --out cert.pem

31.32.4 Protocol Details

Command

Tc 0x43
Lc = 2
Vc =1

where —

I = Object ID (2 bytes)

Response

Tr 0xc3
Lr = LD
Vr D

where —

D = Data

31.32. GET OPAQUE Command 287

YubiHSM 2 User Guide

31.33 GET OPTION Command

Get device-global Options. Each invocation of this command retrieves a single Option, which is selected by its repre-
sented TAG (see SET OPTION Command).

31.33.1 Shell Example

yubihsm> get option 0 force-audit
Option value is: 00

31.33.2 Interactive Mode

yubihsm> get option e:session, o:option

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* Option Required.
Device option. fips-mode option is only applicable in FIPS compatible YubiHSMs.

Possible Values: algorithm-toggle, command-audit, force-audit, fips-mode

Example

yubihsm> get option 0 force-audit
20ption value is: 00

31.33.3 Command Line Mode

$ yubihsm-shell -a get-option --opt-name <option> [--authkey <authKeyID> -p <password>]

Parameters

e —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

288 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

e --opt-name=STRING Required.
Device option name. fips-mode option is only applicable in FIPS compatible YubiHSMs.

Possible Values: algorithm-toggle, command-audit, force-audit, fips-mode

Example

$ yubihsm-shell -a get-option --opt-name force-audit
Option value is: 00

31.33.4 Protocol Details

Command

Tc 0x50
Lc =1
Vc =T

where —

T = The tag of the selected option (1 byte)

Response

Tr = 0xd®
Lr LO
Vr 0

where —

0 = The option-specific value (LO bytes)

31.34 GET PSEUDO RANDOM Command

Extract a fixed number of pseudo-random bytes from the device, using the internal PRNG.

31.34.1 Shell Example

yubihsm> get random 0O 16
bd50979da2d1bcal3d8d735abf419556

31.34. GET PSEUDO RANDOM Command 289

YubiHSM 2 User Guide

31.34.2 Interactive Mode

yubihsm> get random e:session, w:count, F:out=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
¢ Count Required.
Number of bytes to request.
* File
Pseudo random number.
Possible Values: Path to file or - for stdout
Default Value: stdout

Default Output Format: hexf

Example

yubihsm> get random 0 16
bd50979da2d1bcal3d8d735abf419556

31.34.3 Command Line Mode

$ yubihsm-shell -a get-pseudo-random [--count <count> --out <file> --authkey <authKeyID>
< -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* —-p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

¢ —-count=INT
Number of bytes to request
Default Value: 256

¢ --out=STRING

290 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Pseudo random number.
Possible Values: Path to file or stdout
Default Value: stdout
Default Output Format: hex
e ——outformat=ENUM
Output data format
Possible Values: base64, binary, PEM, hex

Example

$ yubihsm-shell -a get-pseudo-random --count=16
81a0060782bc2386cdf7df597035c6d1

31.34.4 Protocol Details

Command

Tc = 0x51
Lc = 2
Vc =B

where —

B = Number of pseudo-random bytes to extract (2 bytes)

Response

Tr 0xd1
Lr =B
Vr = R

where —

R = Random data (B bytes)

31.35 GET PUBLIC KEY Command

Fetch the public key of an object. With YubiHSM firmware version prior to 2.4, only public key of Asymmetric Key
are returned. With firmware version 2.4 or later, public keys of RSA Wrap Keys can also be returned.

31.35. GET PUBLIC KEY Command 291

YubiHSM 2 User Guide

31.35.1 Interactive Mode

yubihsm> get pubkey e:session, w:key_id, t:key_type=asymmetric-key, F:file=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* key_id Required.
Asymmetric key Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* key_type
Object type.
Possible Values: asymmetric-key or wrap-key
Default Value: asymmetric-key
* File
Public key.
Possible Values: Path to file or - for stdout
Default Value: stdout
Default Format: PEM

Example

Fetch the public key of RSA Wrap Key 0x2846.

yubihsm> get pubkey 0 0x2846 wrap-key

MFKwEWYHK0ZIZzjOCAQYIK0ZIzjODAQcDQQAE85fayPHTvCrvORRCcyCsHVOhTKAM7
xHiU2I3Ng06 1RTRQumGDeBnQZIITykK/OPWKLGDANfBVrmKkWWxB47ze9A==

31.35.2 Command Line Mode

$ yubihsm-shell -a get-public-key -i <key_id> [-t <key_type> --out <file> --outformat
—<format> --authkey <authKeyID> -p <password>]

292 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.
Object ID of an asymmetric key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
e -t, --object-type=STRING
Object type.
Possible Values: asymmetric-key or wrap-key
Default Value: asymmetric-key
* --out=STRING
Public key.
Possible Values: Path to file or stdout
Default Value: stdout
Default Format: PEM
* ——outformat=ENUM
Output data format.
Possible Values: binary, PEM

Example

Fetch the public key of RSA Wrap Key 0x2846.

$ yubihsm-shell -a get-public-key -i 0x2846 -t wrap-key

MFkwEWYHK0ZIzjOCAQYIK0ZIZjODAQCDQUAESS fayPHTvCrvORRCYCSHVOhTKAMZ
xHiU2I3Ng06 1RTRQUMGDeBnQZIITykK/OPWKLGDAN fBVrmKKWWxB47ze9A==

31.35. GET PUBLIC KEY Command 293

YubiHSM 2 User Guide

31.35.3 Protocol Details

Command

Tc = 0x54
Lc=2 | {+11}
Vce=I{ || T}

where —
I = Object ID (2 bytes)
T =Type, Objects (1 byte)

Response
Tr = 0xd4
Lr =1+ LP1 { + LP2 }

Vr=A || P1 { || P2}

where —

AA = ALGORITHMS

Pl=
* For RSA: Public modulus N (256, 384 or 512 bytes)
 For ECC: Public point X (32, 48, 64 or 66 bytes)
 For EDC: Public point A, compressed (32 bytes)

P2 =
* For RSA: NOT DEFINED
» For ECC: Public point Y (32, 48, 64 or 66 bytes)
» For EDC: NOT DEFINED

31.36 GET STORAGE INFO Command

Report currently free storage. This is reported as currently free records, free pages and page size. Each object takes a
record slot and will use as many pages as needed.

31.36.1 Shell Example

yubihsm> get storage 0
free records: 255/256, free pages: 1023/1024 page size: 126 bytes

294 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.36.2 Interactive Mode

yubihsm> get storage e:session

Parameters

session Required,
The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Example

yubihsm> get storage 0
free records: 255/256, free pages: 1023/1024 page size: 126 bytes

31.36.3 Command Line Mode

This command is not available in command line mode.

31.36.4 Protocol Details

Command

Tc = 0x41

Lc =0

Ve = 0@

Response

Tr = 0xcl

Lr = 10

Vr = Rtotal || Rfree || Ptotal || Pfree || S

where —

Rtotal = Total number of records (2 bytes)
Rfree = Currently free storage records (2 bytes)
Ptotal = Total number of pages (2 bytes)
Pfree = Currently free storage pages (2 bytes)

S = Page size in bytes (2 bytes)

31.36. GET STORAGE INFO Command 295

YubiHSM 2 User Guide

31.37 GET TEMPLATE Command

Retrieve a Template Object from the device.

31.37.1 Shell Example

Fetch Template Object 0x7b19 and store in the file template.dat.

yubihsm> get template 0 0x7b19 template.dat

31.37.2 Interactive Mode

yubihsm> get template e:session, w:object_id, F:out=-

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* object_id Required.

Object ID of a template object. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* File

Template value.

Possible Values: Path to file or - for stdout

Default Value: stdout

Example

Fetch Template Object 0x7b19 and store in the file template.dat.

yubihsm> get template 0 0x7b19 template.dat

31.37.3 Command Line Mode

$ yubihsm-shell -a get-template -i <object_id> [--out <file> --outformat <format> --
—authkey <authKeyID> -p <password>]

296 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of a template object. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
¢ —-out=STRING

Template value.

Possible Values: Path to file or stdout

Default Value: stdout
e ——outformat=ENUM

Output data format.

Possible Values: base64, hex, PEM

Example

Fetch the public key of Asymmetric Key 0x2846.

$ yubihsm-shell -a get-template -i 0x7b19 --out template.dat

31.37.4 Protocol Details

Command

Tc Ox5f
Lc = 2
Vc =1

where —

I = Object ID of the Template to retrieve (2 bytes)

31.37. GET TEMPLATE Command 297

YubiHSM 2 User Guide

Response

Tr = Oxdf
Lr = LD
Vr D

where —

D = Data

31.38 IMPORT WRAPPED Command

Import a wrapped/encrypted Object that was previously exported by an YubiHSM 2 device into the device. The im-
ported object will retain its metadata (Object ID, Domains, Capabilities, etc), however, the object’s origin will be
marked as imported instead of generated.

31.38.1 Shell Example

Import the Object stored in key . enc and unwrap it using Wrap Key 0xc£94.

yubihsm> put wrapped 0 0xcf94 key.enc
Object imported as 0x997e of type asymmetric

31.38.2 Interactive Mode

yubihsm> put wrapped e:session, w:wrapkey_id, i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* wrapkey_id Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

* File
Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdin

Default Format: base64

298 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Import the Object stored in key. enc and unwrap it using Wrap Key 0xc£94.

yubihsm> put wrapped 0 0xcf94 key.enc
Object imported as 0x997e of type asymmetric

31.38.3 Command Line Mode

$ yubihsm-shell -a put-wrapped --wrap-id <wrapkey_id> [--in <file> --authkey <authKeyID>

—-p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

e -p, --password=STRING

The password to authentication key used to open a session. The password is prompted for if not
specified.

* --wrap-id=INT Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

e —-in=STRING
Encrypted/wrapped object.
Possible Values: Path to file or stdin
Default Value: stdin

Default Format: base64

Example

Import the Object stored in key . enc and unwrap it using Wrap Key 0xc£94.

$ yubihsm-shell -a put-wrapped --wrap-id 0xcf94 --in key.enc

31.38.4 Protocol Details

Command
Tc = 0x4b
Lc =2 + 13 + 10

Vce=I || N]|[]O

31.38. IMPORT WRAPPED Command

299

YubiHSM 2 User Guide

where —

I = Object ID of the Wrap Key (2 bytes)

N = Nonce associated with this wrapped Object (13 bytes)
0 = Wrapped Objects (Length dependant on Object)

Response

Tc = 0xcb
Le = 3
Vc T || I

where —
T = Type, Objects of imported Object (1 byte)
I = Object ID of imported Object (2 bytes)

31.39 IMPORT RSA WRAPPED Command

Available on YubiHSM devices with firmware version 2.4 or higher.

Import a wrapped/encrypted Object that was previously exported by an YubiHSM 2 device into the device. The im-
ported object will retain its metadata (Object ID, Domains, Capabilities, etc), however, the object’s origin will be
marked as imported instead of generated.

31.39.1 Interactive Mode

yubihsm> put rsa_wrapped e:session, w:wrapkey_id, a:hash=rsa-oaep-sha256, a:mgfl=-mgfl-
—sha256, i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

» wrapkey_id Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

* File
Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdin
Format: Binary

¢ hash

300 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
* mgfl
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgfl-sha384 or mgf1-sha512
Default Value: mgf1-sha256

Example

Import the Object stored in object.enc and unwrap it using Wrap Key 0xc£94.

yubihsm> put rsa_wrapped 0 0xcf94 rsa-oaep-sha384 mgfl-shal object.enc
Object imported as 0x997e of type asymmetric

31.39.2 Command Line Mode

$ yubihsm-shell -a put-rsa-wrapped --wrap-id <wrapkey_id> [--oaep <oaep> --mgfl <mgfl> -
—-in <file> --authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

e -p, --password=STRING

The password to authentication key used to open a session. The password is prompted for if not
specified.

e --wrap-id=INT Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

e —-in=STRING
Encrypted/wrapped object.
Possible Values: Path to file or stdin
Default Value: stdin
Format: Binary
¢ --0aep=STRING
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512

Default Value: rsa-oaep-sha256

31.39. IMPORT RSA WRAPPED Command 301

YubiHSM 2 User Guide

e —-mgf1=STRING
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgfl-sha384 or mgf1-sha512
Default Value: mgf1-sha256

Example

Import the Object stored in object.enc and unwrap it using Wrap Key 0xc£94.

$ yubihsm-shell -a put-rsa-wrapped --wrap-id 0xcf94 --oaep rsa-oaep-sha384 --mgfl mgfl-
—shal --in object.enc

31.39.3 Protocol Details

Command

Tc = 0x77

lLc =2+ 1+ 1+ Lw + LHL
Ve=I|[|HI|IM]|]W][]HL
where —

I = Object ID of the Wrap Key (2 bytes)

H=ALGORITHMS to use for OAEP label (1 byte)

M = ALGORITHMS to use for MGF1 (1 byte)

W = The wrapped object (Length dependent on object)

LH = The label digest (Length dependent on OAEP algorithm)

Response

Tc 0xf7
Lc = 3
Vc T || I

where —
T = Type, Objects of imported Object (1 byte)
I = Object ID of imported Object (2 bytes)

302 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.40 IMPORT RSA WRAPPED KEY Command

Available on YubiHSM devices with firmware version 2.4 or higher.

Import a wrapped/encrypted an (a)symmetric key object. Only asymmetric and symmetric key objects are valid targets.
Asymmetric keys are expected to have been serialized as PKCS#8. Since the object properties are not part of the

wrapped object, they must be provided separately.

31.40.1 Interactive Mode

yubihsm> put rsa_wrapped_key e:session, w:wrapkey_id, t:type, w:key_id, a:algorithm,..
—»s:label, d:domains, c:capabilities, a:hash=rsa-oaep-sha256, a:mgfl=mgfl-sha256,..
—i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* wrapkey_id Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

* type Required.

Type of the object to import.

Possible Values: asymmetric-key or symmetric-key
* key_id Required.

Object ID of the imported key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

* algorithm Required.
Algorithm of the imported key.
Possible values:
For RSA keys: rsa2048, rsa3072, rsa4096
For EC keys: eck256, ecp224, ecp256, ecp384, ecp521, ecbp256, ecbp384, ecbp512
For ED keys: ed25519
For AES keys: aes128, aes192, aes256
¢ label Required.
Key label. Can be empty.
Possible Values: Maximum of 40 characters string

e data

31.40. IMPORT RSA WRAPPED KEY Command

303

YubiHSM 2 User Guide

Encrypted/wrapped object.
Possible Values: Path to file or - for stdin
Default Value: stdin
Format: Binary
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use all to include all capabilities. Use none to include no capability. Mul-
tiple capabilities can be separated by , or : with no spaces between.

Possible Values: none, all, decrypt-oaep, decrypt-pkcs, derive-ecdh, exportable-under-wrap, sign-
attestation-certificate, sign-ecdsa, sign-eddsa, sign-pkcs, sign-pss, sign-ssh-certificate

* hash
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
* mgfl
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgfl-sha384 or mgfl-sha512
Default Value: mgf1-sha256

Example

Import the Object stored in key . enc and unwrap it using Wrap Key 0xcf94.

yubihsm> put rsa_wrapped_key 0xcf94 asymmetric-key 0 rsa2048 "" 1,2,3 sign-pkcs,
—.exportable-under-wrap rsa-oaep-sha384 mgfl-shal key.enc

Object imported as 0x97df of type asymmetric

31.40.2 Command Line Mode

$ yubihsm-shell -a put-rsa-wrapped-key --wrap-id <wrapkey_id> -t <key_type> -A <key_
—algorithm> -d <domains> [-i <key_id> -1 <key_label> -c <capabilities> --oaep <oaep> --
—mgfl <mgfl> --in <file> --authkey <authKeyID> -p <password>]

304 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

¢ ——authkey=INT

* b,

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

--password=STRING

The password to authentication key used to open a session. The password is prompted for if not
specified.

e --wrap-id=INT Required.

Object ID of the wrap key to decrypt/unwrap the data. Object ID is a 2 bytes integer. Can be specified
in hex or decimal.

e —-in=STRING

° _t,
. _i’
. _A’
. _l'
. _d’
e -C,

Encrypted/wrapped object.

Possible Values: Path to file or stdin

Default Value: stdin

Format: Binary

--object-type=STRING Required.

Type of the object to import.

Possible Values: asymmetric-key or symmetric-key
--object-id=SHORT

Object ID of the imported key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

--algorithm=STRING Required.
Algorithm of the imported key.
Possible values:
For RSA keys: rsa2048, rsa3072, rsa4096
For EC keys: eck256, ecp224, ecp256, ecp384, ecp521, ecbp256, ecbp384, ecbp512
For ED keys: ed25519
For AES keys: aes128, aes192, aes256
--1abel=STRING
Key label. Can be empty.
Possible Values: Maximum of 40 characters string
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING

31.40. IMPORT RSA WRAPPED KEY Command

305

YubiHSM 2 User Guide

Capabilities of the key. Use all to include all capabilities. Use none to include no capability. Mul-
tiple capabilities can be separated by , or : with no spaces between.

Possible Values: none, all, decrypt-oaep, decrypt-pkes, derive-ecdh, exportable-under-wrap, sign-
attestation-certificate, sign-ecdsa, sign-eddsa, sign-pkcs, sign-pss, sign-ssh-certificate

* --0aep=STRING
Hash algorithm to use for OAEP label.
Possible Values: rsa-oaep-shal, rsa-oaep-sha256, rsa-oaep-sha384 or rsa-oaep-sha512
Default Value: rsa-oaep-sha256
* —--mgf1=STRING
Hash algorithm to use for MGF1.
Possible Values: mgfl-shal, mgf1-sha256, mgf1-sha384 or mgf1-sha512
Default Value: mgf1-sha256

Example

Import the Object stored in key . enc and unwrap it using Wrap Key 0xcf94.

$ yubihsm-shell -a put-rsa-wrapped-key --wrap-id 0xcf94 -t asymmetric-key -d 1,2,3 -A.
—rsa2048 --oaep rsa-oaep-sha384 --mgfl mgfl-shal --in key.enc

31.40.3 Protocol Details

Command

Tc 0x75
Lc 2+ 1+2+40+2+8+ 1+ 1+ 1+ Lw+ LHL
Ve=TI || To || Ti [|[L[D[] CI|A]lHIIlM]||W]||]HL

where —

I = Object ID of the Wrap Key (2 bytes)

To = Objects of the imported key (1 byte)

Ti = Object ID of the imported key (2 bytes)

L = Label of the imported key (40 bytes)

D = Domain of the imported key (2 bytes)

C = Capability of the imported key (8 bytes)

A =ALGORITHMS of the imported key (1 byte)
H=ALGORITHMS to use for OAEP label (1 byte)

M =ALGORITHMS to use for MGF1 (1 byte)

W = The wrapped object (Length dependent on object)
LH = The label digest (Length dependent on OAEP algorithm)

306 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Response

Tc = 0x£5
Le = 3
Vc T || I

where —
T = Type, Objects of imported Object (1 byte)
I = Object ID of imported Object (2 bytes)

31.41 LIST OBJECTS Command

Get a filtered list of Objects from the device.

31.41.1 Shell Example

Get a list of all Asymmetric Keys for Session 0.

yubihsm> list objects 0 0 asymmetric-key
Found 4 object(s)

id: 0x3479, type: asymmetric-key, sequence:
id: 0x7df6, type: asymmetric-key, sequence:
id: 0x9602, type: asymmetric-key, sequence:
id: Oxd6cd, type: asymmetric-key, sequence:

(=2 — I — I —]

31.41.2 Interactive Mode

yubihsm> list objects e:session, w:id=0, t:type=any, d:domains=0, c:capabilities=0,.
—a:algorithm=any, b:with-compression=0, s:label=

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
« Id
Object ID. 0 returns all Object IDs. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
Default Value: 0
* Type
Object type. any returns all types>

Possible Values: any, opaque, authentication-key, asymmetric-key, wrap-key, hmac-key, template,
otp-aead-key

Default Value; any

31.41. LIST OBJECTS Command 307

YubiHSM 2 User Guide

* domains
Domains where the key will be accessible. all returns all domains.
Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Default Value: all
* capabilities
Capabilities of the key. all returns all capabilities.

Possible Values: all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp, decrypt-
pkcs, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque, delete-otp-
aead-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-under-wrap,
generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-key, get-log-
entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-asymmetric-
key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template, put-wrap-
key, randomize-otp-acad, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key, set-
option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-ssh-
certificate, unwrap-data, verify-hmac, wrap-data

Default Value: all
¢ algorithm
Key algorithm. any returns all algorithms.

Possible Values: any, rsa2048, rsa3072, rsa4096, ecp256, ecp384, ecp521, eck256, ecbp256,
ecbp384, ecbp512, ed25519, ecp224, hmac-shal, hmac-sha256, hmac-sha384, hmac-sha512, aes128-
ccm-wrap, opaque-data, opaque-x509-certificate, aes128-yubico-otp, aes128-yubico-authentication,
aes192-yubico-otp, aes256-yubico-otp, aes192-ccm-wrap, aes256-ccm-wrap

Default Value: any
* with-compression
Detect X509Certificates that are stored as compressed certificate. Default is 0.
Possible Values:
0 - (Default) Do not differentiate between compressed and non-compressed X509Certificate.
1 - Detect compressed X509Certificate.
Default Value: 0
* label
Object label. Empty value matches all labels.
Possible Values: Maximum of 40 characters string.

Default Value: Empty

308 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Get a list of all Asymmetric Keys for Session 0.

yubihsm> list objects 0 0 asymmetric-key
Found 4 object(s)

id: 0x3479, type: asymmetric-key, sequence:
id: 0x7df6, type: asymmetric-key, sequence:
id: 0x9602, type: asymmetric-key, sequence:
id: Oxd6cd, type: asymmetric-key, sequence:

(=R — I —]

31.41.3 Command Line Mode

$ yubihsm-shell -a list-objects -t <type> -A <algorithm> [-i <key_id> -1 <label> -d
—.<domains> -c <capabilities> --with-compression --authkey <authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT
Object ID. 0 returns all Object IDs. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
Default Value: 0

e -t, --object-type=STRING Required.
Object type. Use any to return all types.

Possible Values: any, opaque, authentication-key, asymmetric-key, wrap-key, hmac-key, template,
otp-aead-key

e -1, --1abel=STRING
Object label.
Possible Values: Maximum of 40 characters string

Default Value: Empty

.
|
[oH

--domains=STRING

Domains where the key will be accessible.

Possible Values: all,1,2,3.4,5,6,7,8,9,10,11,12,13,14,15,16
Default Value: all

e -c, --capabilities=STRING

31.41. LIST OBJECTS Command

309

YubiHSM 2 User Guide

Capabilities of the key.

Possible Values: all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp, decrypt-
pkcs, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque, delete-otp-
aead-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-under-wrap,
generate-asymmetric-key, generate-hmac-key, generate-otp-acad-key, generate-wrap-key, get-log-
entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-asymmetric-
key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template, put-wrap-
key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key, set-
option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-ssh-
certificate, unwrap-data, verify-hmac, wrap-data

Default Value: all
e -A, --algorithm=STRING Required.
Key algorithm. Use any to return all algorithms.

Possible Values: any, rsa2048, rsa3072, rsa4096, ecp256, ecp384, ecp521, eck256, ecbp256,
ecbp384, ecbp512, ed25519, ecp224, hmac-shal, hmac-sha256, hmac-sha384, hmac-sha512, aes128-
ccm-wrap, opaque-data, opaque-x509-certificate, aes128-yubico-otp, aes128-yubico-authentication,
aes192-yubico-otp, aes256-yubico-otp, aes192-ccm-wrap, aes256-ccm-wrap

e —-with-compression
Detect X509Certificates that are stored as compressed certificate. Default is not to.

Example

Generate a new key using secp256r1 in the device.

$ yubihsm-shell -a list-objects -t any -A any
Found 4 object(s)

id: 0x3479, type: asymmetric-key, sequence:
id: 0x7df6, type: asymmetric-key, sequence:
id: 0x9602, type: asymmetric-key, sequence:
id: Oxd6cd, type: asymmetric-key, sequence:

(=2 — I — I —]

31.41.4 Protocol Details

Command

Tc 0x48
Lc = LF
Vc = F

where —

F = List of Tag-Value pairs describing a filter to apply. Possible tags to use for filtering are described in the table below.

310 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Name Identifier Length
ID, Object ID 0x01 2 bytes
TYPE, Objects 0x02 1 byte
Domain 0x03 2 bytes
Capability 0x04 8 bytes
ALGORITHMS 0x05 1 byte
Label 0x06 40 bytes

Response

Tr = 0xc8
Lr =4 * N
Vr R1 || R2 || ... || RN

where —

Ri = Object ID (2 bytes), Type, Objects (1 byte) and Sequence (1 byte).

31.42 PUT ASYMMETRIC KEY Command

Import an Asymmetric Key into the device.

31.42.1 Shell Example

Store an RSA key from key.pem into the device.

yubihsm> put asymmetric ® O rsakey 1 sign-pkcs key.pem
Stored Asymmetric key Oxlel5

31.42.2 Protocol Details

Command
Tc = 0x45
Lc =2 +40 + 2 + 8+ 1 + LP1 { + LP2 }

Ve=TI|[lLIIDIICIIAIIPL{I|lP2}

The key parameters vary according to the chosen algorithm. Each parameter has a fixed length and the order is com-
pulsory.

where —

I = Object ID of the Asymmetric Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

31.42. PUT ASYMMETRIC KEY Command 311

YubiHSM 2 User Guide

A =ALGORITHMS (1 byte)

Pl =
For RSA: secret prime p (128, 192 or 256 bytes)
For ECC: private key integer d (32, 48, 64 or 66 bytes)
For EDC: private key integer k (32 bytes)

P2 =
For RSA: secret prime q (128, 192 or 256 bytes)
For ECC: NOT DEFINED
For EDC: NOT DEFINED

Response

Tr = 0xc5

Lr = 2

Vr = I

where —

I = ID of created Object (2 bytes)

31.43 PUT ASYMMETRIC AUTHENTICATION KEY Command

Available with firmware version 2.3.1 or later.

Store an Asymmetric Authentication Key in the device.

31.43.1 Interactive Mode

yubihsm> put authkey_asym e:session,w:key_id,s:label,d:domains,c:capabilities,
—.c:delegated_capabilities,i:pubkey=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use ‘0’ to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal

¢ label Required.
Key label. Can be empty.

Possible Values: Maximum of 40 characters string

312 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use all to include all capabilities. Use none to include no capability. Mul-
tiple capabilities can be separated by , or : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkces, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-acad-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

* delegated_capabilities Required.

Delegated capabilities of the key. Use none to include no capability. Multiple capabilities can be
separated by , or : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkes, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aead-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data. Use all to include all capabilities.

* pubkey

The public key of the clien. When using stdin, click CTRL-D to mark end of input. Input format for a
password string is password. If password format is used, the tool will derive an ec-p256 private key
from the input string and calculate the public key from that. The private key is not used for anything
else.

Possible Values: File containing the client’s public key as an uncompressed ec-p256 public key, pass-
word or - for stdin

Default Value: stdin
Default format: PEM
Possible format for public key file: PEM, HEX, binary.

31.43. PUT ASYMMETRIC AUTHENTICATION KEY Command 313

YubiHSM 2 User Guide

Example

Store a new Asymmetric Authentication Key using a client’s public key:

yubihsm> put authkey_asym ©® 0 asym_authkey 1,2,3 generate-asymmetric-key,sign-pkcs sign-
—pkcs

MFkwEwYHK0ZIZzjOCAQYIKoZIzjODAQcDQUAEKI fzuX9ul2gsNgXcFYtNkP30aBp+
e®f9mhpy+1QbvbbD72y5HiMIkbNkqBXHOWSPu/suD/f1BoN8xcP4FHk4iw==

Stored Authentication key 0xe599

31.43.2 Command Line Mode

Asymmetric authentication keys cannot be added using the command line.

31.43.3 Protocol Details

Command
Tc = 0x44
Llc=2+40 + 2 + 8 +1 + 8 + 64

Ve=I || LJ[IDIJlCI|IATIIDCI| Key

where —

I = Object ID of the Authentication Key (2 bytes)

L = Label (40 bytes)

D = Domains (2 bytes)

C = Capabilities (8 bytes)

A = Algorithm (1 bytes)

DC = Delegated Capabilities (8 bytes)

Key = Uncompressed EC-P256 public key (64 bytes)

Response

Tr = 0xc4
L7 = 2
Vr = 1

where —

I = Object ID of created Authentication Key (2 bytes)

Note: This command will return ERROR_INV_DATA if Key is not a valid EC-P256 key.

314 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.44 PUT AUTHENTICATION KEY Command

Store an Authentication Key in the device.

31.44.1 Shell Example

Store a new Authentication Key derived from the password newpassword.

yubihsm> put authkey 0 0 authkey 1 generate-asymmetric-key,sign-pkcs
sign-pkcs newpassword
Stored Authentication key 0xbb72

31.44.2 Interactive Mode

yubihsm> put authkey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—.c:delegated_capabilities, i:password=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkces, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-acad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-acad-key,

31.44. PUT AUTHENTICATION KEY Command 315

YubiHSM 2 User Guide

Example

set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data Use all to include all capabilities.

* delegated_capabilities Required.

Delegated capabilities of the key. Use none to include no capability. Multiple capabilities can be
separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkes, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data. Use all to include all capabilities.

* password

The password used to derive the session keys from this authentication key.
Possible Values: The password or - for stdin
Default Value: stdin

Input Format: password

Store a new Authentication Key derived from the password newpassword.

yubihsm> put authkey 0 0 authkey 1 generate-asymmetric-key,sign-pkcs sign-pkcs.
—newpassword
Stored Authentication key 0xbb72

31.44.3 Command Line Mode

$ yubihsm-shell -a put-authentication-key -i <key_id> -1 <label> -d <domains> -c
—.<capabilities> --delegated <delegated_capabilities> [--new-password <new_authkey_
—password> --authkey <authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1

* -p, --password=STRING Required.
The password to authentication key used to open a session. The password is prompted for if not
specified.
e -i, --object-id=SHORT Required.
316 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

. -1,
. -d,
L] —c’

Object ID of the asymmetric key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

--1abel=STRING Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string.
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Value: all,1,2,3.4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING Required.

Capabilities of the key. Use all to include all capabilities. Use none to include no capability. Mul-
tiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkcs, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-acad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

¢ --delegated=STRING Required.

Delegated capabilities of the key. Use all to include all delegated capabilities. Use none to include
no delegated capability. Multiple capabilities can be separated by comma , or colon : with no spaces
between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkces, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-acad-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

¢ —-new-password=STRING

The password used to derive the session keys from this authentication key.
Possible Values: The password or stdin
Default ValueL: stdin

Input Format: password

31.44. PUT AUTHENTICATION KEY Command

317

YubiHSM 2 User Guide

Example

Fetch the public key of Asymmetric Key 0x2846.

$ yubihsm-shell -a put-authentication-key -i ® -1 authkey -d 1 -c generate-asymmetric-
—key,sign-pkcs --delegated sign-pkcs --new-password newpassword
Stored Authentication key 0xbb72

31.44.4 Protocol Details

Command
Tc = 0x44
Llc=2+40 + 2 +8+ 1+ 8+ 16 + 16

Ve=I || LJ[IDIJ]CIIAIlIDCI|Ke]|| Kn

where —

I = Object ID of the Authentication Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

DC = Delegated Capability (8 bytes)

Ke = Encryption Key (16 bytes)

Km = Mac Key (16 bytes)

Response

Tr 0xc4
L = 2
Vr = 1

where —

I = Object ID of created Authentication Key (2 bytes)

31.45 PUT HMAC KEY Command

Store an HMAC Key in the device.

318 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.45.1 Shell Example

Store an HMAC Key with the binary value 666£6f in the device.

yubihsm> put hmackey 0 0 hmackey 1 sign-hmac, verify-hmac hmac-sha256 666f6f
Stored HMAC key 0x7cf2

31.45.2 Interactive Mode

yubihsm> put hmackey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—a:algorithm, i:key

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, sign-hmac, verify-hmac, exportable-under-wrap
* Algorithm Required.

Key algorithm.

Possible Values: hmac-shal, hmac-sha256, hmac-sha384, hmac-sha512
* key Required.

The HMAC key.

Format: hex

31.45. PUT HMAC KEY Command 319

YubiHSM 2 User Guide

Example

Store an HMAC Key with the binary value 666£6f in the device.

yubihsm> put hmackey 0 0 hmackey 1 sign-hmac, verify-hmac hmac-sha256 666f6f
Stored HMAC key 0x7cf2

31.45.3 Command Line Mode

This command is not available in command line mode.

31.45.4 Protocol Details

Command
Tc = 0x52
Lc =2 +40 + 2 + 8 +1 + LP

Ve=I || LI[IDIJICIIAIIP

where —

I = Object ID of the HMAC Key (2 bytes)

L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

P = Key (Minimum 1 byte)
For HMAC-SHA1 and HMAC-SHA256: maximum 64 bytes
For HMAC-SHA384 and HMAC-SHAS512: maximum 128 bytes

Response

Tr = 0xd2
Lr = 2
Vr I

where —

I = Object ID of created HMAC Key (2 bytes)

320 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.46 PUT OPAQUE Command

Stores Opaque data (like an X.509 certificate) in the device. The size of the object is currently limited to what will fit
into one message to the YubiHSM 2 (2028 bytes, including the headers).

31.46.1 Shell Example

Store the certificate in file cert.der in the device.

yubihsm> put opaque 0 0O certificate 1 none opaque-x509-certificate 0 cert.der
Stored Opaque object 0xe255

31.46.2 Interactive Mode

yubihsm> put opaque e:session, w:object_id, s:label, d:domains, c:capabilities,..
—a:algorithm, b:with-compression=0, i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Object label. Can be empty.

Possible Values: Maximum of 40 characters string.
* domains Required.

Domains where the object will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the data

Possible Values: none, exportable-under-wrap
* algorithm Required.

Key algorithm. If opaque-x509-certificate, the value of the object will be treated as an
X509Certificate.

Possible Values: opaque-data, opaque-x509-certificate

* with-compression Required.

31.46. PUT OPAQUE Command 321

YubiHSM 2 User Guide

Compress certificate data before importing it into the YubiHSM2. Only applicable for opaque objects
with algorithm opaque-x509-certificate. Default is ®, which does not apply compression.

Possible Values:
0 - Do not compress.
1 - Do compress.
* data
Opaque data value (e.g. X509Certificate).
Possible Values: Path to file or - for stdin
Defaul Value: stdin
Default Format: binary (DER).

Example

Store the certificate in file cert.pem in the device.

yubihsm> put opaque 0 0 certificate 1 none opaque-x509-certificate 0 cert.pem
Stored Opaque object 0xe255

31.46.3 Command Line Mode

$ yubihsm-shell -a put-opaque -i <key_id> -1 <label> -d <domains> -c <capabilities> [--
—in <key> --informat <informat> --with-compression --authkey <authKeyID> -p <password>]

Parameters

e —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the asymmetric key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

e -1, --1abel=STRING Required.
Object label. Can be empty.

Possible Values: Maximum of 40 characters string

°
|
Q.

--domains=STRING

322 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Domains where the opaque object will be accessible. Use all to indicate all domains. Multiple
domains can be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
e -C, --capabilities=STRING
Capabilities of the key.
Possible Values: none, exportable-under-wrap
Default Value: none
e —-in=STRING
Opaque data value (e.g. X509Certificate).
Possible Values: Path to file or stdin
Default Value: stdin
Default Format: binary (DER)
e --informat=ENUM
Input data format
Possible Values: PEM, binary
e —-with-compression

Compress certificate data before importing it into the YubiHSM2. Only applicable for opaque objects
with algorithm opaque-x509-certificate. Default is no compression.

Example

Store the certificate in file cert.der in the device.

$ yubihsm-shell -a put-opaque -i ® -1 certificate -d 1 -A opaque-x509-certificate --in.
—.cert.der

31.46.4 Protocol Details

Command

Tc = 0x42

Lc =2 +40 + 2 + 8 +1 + LO
Vce=I|[|LI|IDIJlICII]AIIO
where —

I = Object ID (2 bytes)

L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)
0 = Opaque data

31.46. PUT OPAQUE Command 323

YubiHSM 2 User Guide

Response

Tr = 0xc2
L7 = 2
Vr = 1

where —

I = Object ID of created Opaque Object (2 bytes)

31.47 PUT OTP AEAD KEY Command

Import an OTP AEAD Key used for Yubico OTP Decryption.

31.47.1 Shell Example

Import OTP AEAD Key with Nonce ID 0x01020304 and key value 000102030405060708090a0b0c0d0elf (AES-
128).

yubihsm> put otpaeadkey 0 0 otpaeadkey 1 decrypt-otp 0x01020304..
- 000102030405060708090a0b0cOd0edf
Stored OTP AEAD key Oxe34f

31.47.2 Interactive Mode

yubihsm> put otpaeadkey e:session, w:key_id, s:label, d:domains, c:capabilities, u:nonce_
—id, i:key

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

324 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

» Capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, decrypt-otp, create-otp-aead, randomize-otp-aead, rewrap-from-otp-aead-key,
rewrap-to-otp-aead-key, exportable-under-wrap

* nonce_id Required.

OTP nonce. 4 bytes.
* key Required.

The AEAD key.

Format: hex

Example

Import OTP AEAD Key with Nonce ID 0x01020304 and key value 000102030405060708090a0b0c0d0e®f (AES-
128).

yubihsm> put otpaeadkey 0 0 otpaeadkey 1 decrypt-otp 0x01020304.
—000102030405060708090a0b0cOd0edf
Stored OTP AEAD key Oxe34f

31.47.3 Command Line Mode

This command is not available in command line mode.

31.47.4 Protocol Details

Command

Tc = 0x65
Llc=2+40 + 2 + 8 + 1+ 4 + LK
Ve=TII[|LI|IDIJ|[CI|]AI[lNIIK
where —

I = Object ID (2 bytes)

L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)
N = Nonce ID (4 bytes)

K = Key (16, 24 or 32 bytes depending on algorithm)

31.47. PUT OTP AEAD KEY Command 325

YubiHSM 2 User Guide

Response

Tr = 0xe5
L = 2
Vr = 1

where —

I = ID of created OTP AEAD Key (2 bytes)

31.48 PUT SYMMETRIC KEY Command

Available with firmware version 2.3.1 or later.

Import a symmetric Key into the device.

31.48.1 Interactive Mode

yubihsm> put symmetric e:session,w:key_id,s:label,d:domains,c:capabilities,a:algorithm,
—1i:key

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use ‘0’ to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
, or : with no spaces between.

Possible Values: none, encrypt-ecb, decrypt-ecb, encrypt-cbc, decrypt-cbe, exportable-under-wrap
* algorithm Required.

Key algorithm.

Possible Values: aes128, aes192,aes256

326 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

* key Required.

Example

Symmetric key.
Possible Values: Value of the symmetric key

Input format: HEX

Store an AES128 key into the device:

yubihsm> put symmetric 0 O aeskey 1 encrypt-cbc,decrypt-cbc aesl28.
—0a8a7ecc862b3d42b5dcl27cl11dad®f4
Stored symmetric key 0x71c9

31.48.2 Command Line Mode

$ yubihsm-shell -a put-symmetric-key -i <key_id> -1 <label> -d <domains> -c
—<capabilities> -A <algorithm> --in <key> [--authkey <authKeyID> -p <password>]

Parameters

e —-authkey=INT

_i’

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--password=STRING Required.

The password to authentication key used to open a session. The password will be prompted for if not
specified.

--object-id=SHORT Required.

Object ID of the symmetric key. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be
specified in hex or decimal

--1abel=STRING Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string.
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by , or : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
, or : with no spaces between.

Possible Values: none, encrypt-ecb, decrypt-ecb, encrypt-cbc, decrypt-cbe,exportable-under-wrap

31.48. PUT SYMMETRIC KEY Command

327

YubiHSM 2 User Guide

e -A, --algorithm=STRING Required.
Key algorithm.
Possible Values: aes128, aes192, aes256
* —-in=STRING
Symmetric key.
Possible Values: Value of the symmetric key

Input format: HEX

Example

Store an AES128 key into the device:

$ yubihsm-shell -a put-symmetric-key -1 aeskey -d 1 -c encrypt-cbc, decrypt-cbc -A.
—,aes128 --in Qa8a7ecc862b3d42b5dcl127c111dad®f4

31.48.3 Protocol Details

Command
Tc = 0x6d
Lc =2 +40 + 2 + 8 + 1 + Lk

Ve=TI || LI[IDIJ][CII]AIlIK

The key parameters vary according to the chosen algorithm. Each parameter has a fixed length and the order is com-
pulsory.

where —

I = Object ID of the symmetric Key (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A = ALGORITHMS (1 byte)

K = The key value (16, 24 or 32 bytes)

Response

Tr Oxed
L = 2
Vr = 1

where —

I = ID of created Object (2 bytes)

328 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.49 PUT TEMPLATE Command

Stores a Template in the device. The size of the object is currently limited to what will fit into one message to the

YubiHSM (2021 bytes, including the headers).

31.49.1 Shell Example

Store the SSH Template in file template.dat in the device.

yubihsm> put template 0 0 ssh_template 1 none template-ssh template.dat
Stored Template object 0x7b19

31.49.2 Interactive Mode

yubihsm> put template e:session, w:object_id, s:label, d:domains, c:capabilities,.
—a:algorithm, i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Object label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the object will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
» Capabilities Required.

Capabilities of the data.

Possible Values: none, exportable-under-wrap
* Algorithm Required.

Key algorithm.

Possible Values: template-ssh

e data

31.49. PUT TEMPLATE Command

329

YubiHSM 2 User Guide

Template value.
Possible Values: Path to file or - for stdin
Default Value: stdin

Default Format: base64

Example

Store the SSH Template in file template.dat in the device.

yubihsm> put template 0 O ssh_template 1 none template-ssh template.dat
Stored Template object 0x7b19

31.49.3 Command Line Mode

$ yubihsm-shell -a put-template -i <key_id> -1 <label> -d <domains> -c <capabilities> [--
—in <key> --authkey <authKeyID> -p <password>]

Parameters

¢ —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session.The password is prompted for if not spec-
ified.

e -i, --object-id=SHORT Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e -1, --1abel=STRING Required.
Object label. Can be empty.

Possible Values: Maximum of 40 characters string

.
|
[oH

--domains=STRING Required.

Domains where the opaque object will be accessible. Use all to indicate all domains. Multiple
domains can be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
e -c, --capabilities=STRING

Capabilities of the key.

Possible Values: none, exportable-under-wrap

Default Value: none

e --in=STRING

330 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Template value.
Possible Values: Path to file or stdin
Default Value: stdin

Default Format: base64

Example

Store the SSH Template in file template.dat in the device.

$ yubihsm-shell -a put-template -i 0 -1 ssh_template -d 1 -c none -A template-ssh --in.,
—template.dat

31.49.4 Protocol Details

Command

Tc = 0x5e

Llc =2+ 40 + 2 + 8 + 1 + LD
Vce=I|[|LI|[DIJlCI]AIID
where —

I = Object ID of the Template (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

A =ALGORITHMS (1 byte)

D = Template data

Response

Tr = Oxde
Lr = 2
Vr = 1

where —

I = Object ID of created Template (2 bytes)

31.49. PUT TEMPLATE Command 331

YubiHSM 2 User Guide

31.50 PUT WRAP KEY Command

Import a key for wrapping into the device.

31.50.1 Interactive Mode

Use put wrapkey command to import AES Wrap Key and put rsa_wrapkey command to import RSA Wrap Key

yubihsm> put wrapkey e:session, w:key_id, s:label, d:domains, c:capabilities,..
—.c:delegated_capabilities, i:key

yubihsm> put rsa_wrapkey e:session, w:key_id, s:label, d:domains, c:capabilities,.
—.c:delegated_capabilities, i:key

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

¢ label Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
* domains Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

* delegated_capabilities Required.

Delegated capabilities of the key. Use all to include all capabilities. Use none to include no capa-
bility. Multiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkes, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aead-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,

332 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

* key Required.
The wrap key.

Default Format: hex

Example

Import an AES-128 Wrap Key able to export and import, with some Delegated Capabilities set.

yubihsm> put wrapkey 0 0 wrapkey 1 export-wrapped,import-wrapped exportable-under-wrap,
—sign-pkcs,sign-pss 000102030405060708090a0b0c0d0e®f
Stored Wrap key Oxaff7

31.50.2 Command Line Mode

Use put-wrap-key subcommand to import AES Wrap Key and put-rsa-wrapkey subcommand to import RSA
Wrap Key

$ yubihsm-shell -a put-wrap-key -i <key_id> -1 <label> -d <domains> -c <capabilities> --
—.delegated <delegated_capabilities> --in <key> [--authkey <authKeyID> -p <password>]

$ yubihsm-shell -a put-rsa-wrapkey -i <key_id> -1 <label> -d <domains> -c <capabilities>.
—--delegated <delegated_capabilities> --in <key> [--authkey <authKeyID> -p <password>]

Parameters

¢ —-authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

e -1, --1abel=STRING Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
e -d, --domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

31.50. PUT WRAP KEY Command 333

YubiHSM 2 User Guide

e -c, --capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

* --delegated=STRING Required.

Delegated capabilities of the key. Use all to include all capabilities. Use none to include no capa-
bility. Multiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkcs, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

e —-in=STRING Required.
The wrap key.
Possible Values: Path to file or stdin
Default Value: stdin

Default Format: hex

Example

Import an AES-128 Wrap Key able to export and import, with some Delegated Capabilities set.

$ yubihsm-shell -a generate-wrap-key -i 0 -1 wrapkey -d 1 -c export-wrapped,import-
—wrapped --delegated exportable-under-wrap,sign-pkcs,sign-pss --in wrap.key
Stored Wrap key Oxaff7

31.50.3 Protocol Details

Command
Tc = 0x4c
Llc=2+40 + 2 + 8 + 1+ 8 + LW

Ve=TI|[[L|IDIICII[AIIDCIlW

where —

I = Object ID (2 bytes)
L = Label (40 bytes)

D = Domain (2 bytes)

C = Capability (8 bytes)

334 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

A =ALGORITHMS (1 byte)
DC = Delegated Capability (8 bytes)
W = Wrap Key (16, 24 or 32, 256, 384, 512 bytes)
For AES128_CCM_WRAP: 16 bytes
For AES192_CCM_WRAP: 24 bytes
For AES256_CCM_WRAP: 32 bytes
For RSA2048: 256 bytes
For RSA3072: 384 bytes
For RSA4096: 512 bytes

Response

Tc 0Oxcc
Lc = 2
Vc =1

where —

I = ID of created Wrap Key (2 bytes)

31.51 PUT PUBLIC WRAP KEY Command

Import a public RSA Wrap Key exporting wrapped objects.

31.51.1 Interactive Mode

yubihsm> put pub_wrapkey e:session, w:key_id, s:label, d:domains, c:capabilities,.
—c:delegated_capabilities, i:key=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

¢ key_id Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

* label Required.
Key label. Can be empty.
Possible Values: Maximum of 40 characters string

* domains Required.

31.51. PUT PUBLIC WRAP KEY Command 335

YubiHSM 2 User Guide

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
* capabilities Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

* delegated_capabilities Required.

Delegated capabilities of the key. Use all to include all capabilities. Use none to include no capa-
bility. Multiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkces, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-acad-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

* key Required.
A Public RSA key.
Default Format: PEM

Example

Import the public RSA key from rsa2048_pubkey.pem as a Public Wrap Key able to export and import, with some
Delegated Capabilities set.

yubihsm> put pub_wrapkey 0 0 rsa_wrapkey 1 export-wrapped,import-wrapped exportable-
—under-wrap, sign-pkcs, sign-pss rsa2048_pubkey.pem
Stored Wrap key 0xadf8

31.51.2 Command Line Mode

$ yubihsm-shell -a put-public-wrapkey -i <key_id> -1 <label> -d <domains> -c
—»<capabilities> --delegated <delegated_capabilities> --in <key> [--authkey <authKeyID>
—-p <password> |

336 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

¢ ——authkey=INT

* b,
. _i,
. _1’
. _d’
e -C,

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
--password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

--object-id=SHORT Required.

Object ID. Use 0 to generate Object ID. Object ID is a 2 bytes integer. Can be specified in hex or
decimal.

--1abel=STRING Required.

Key label. Can be empty.

Possible Values: Maximum of 40 characters string
--domains=STRING Required.

Domains where the key will be accessible. Use all to indicate all domains. Multiple domains can
be separated by comma , or colon : with no spaces between.

Possible Values: all,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
--capabilities=STRING Required.

Capabilities of the key. Use none to include no capability. Multiple capabilities can be separated by
comma , or colon : with no spaces between.

Possible Values: none, wrap-data, unwrap-data, export-wrapped, import-wrapped, exportable-under-
wrap

¢ --delegated=STRING Required.

Delegated capabilities of the key. Use all to include all capabilities. Use none to include no capa-
bility. Multiple capabilities can be separated by comma , or colon : with no spaces between.

Possible Values: none, all, change-authentication-key, create-otp-aead, decrypt-oaep, decrypt-otp,
decrypt-pkces, delete-asymmetric-key, delete-authentication-key, delete-hmac-key, delete-opaque,
delete-otp-aecad-key, delete-template, delete-wrap-key, derive-ecdh, export-wrapped, exportable-
under-wrap, generate-asymmetric-key, generate-hmac-key, generate-otp-aead-key, generate-wrap-
key, get-log-entries, get-opaque, get-option, get-pseudo-random, get-template, import-wrapped, put-
asymmetric-key, put-authentication-key, put-mac-key, put-opaque, put-otp-aead-key, put-template,
put-wrap-key, randomize-otp-aead, reset-device, rewrap-from-otp-aead-key, rewrap-to-otp-aead-key,
set-option, sign-attestation-certificate, sign-ecdsa, sign-eddsa, sign-hmac, sign-pkcs, sign-pss, sign-
ssh-certificate, unwrap-data, verify-hmac, wrap-data

* --in=STRING Required.

The file containing an RSA public key.
Possible Values: Path to file or stdin
Default Value: stdin

Default Format: PEM

31.51. PUT PUBLIC WRAP KEY Command

337

YubiHSM 2 User Guide

Example

Import the public RSA key from rsa2048_pubkey.pem as a Public Wrap Key able to export and import, with some
Delegated Capabilities set.

$ yubihsm-shell -a put-public-wrapkey -i ® -1 wrapkey -d 1 -c export-wrapped,import-
—wrapped --delegated exportable-under-wrap,sign-pkcs,sign-pss --in rsa2048_pubkey.pem
Stored Wrap key 0xadf8

31.51.3 Protocol Details

Command

Tc = 0x73
Llc =2+ 40 + 2 + 8 + 1+ 8 + LN
Ve=TI T [|LI|IDIJ][CI||]ATIflD]|[]N

where —
I = Object ID (2 bytes)
L = Label (40 bytes)
D = Domain (2 bytes)
C = Capability (8 bytes)
A =ALGORITHMS (1 byte)
DC = Delegated Capability (8 bytes)
N = RSA public key (256, 384 or 512 bytes)
For RSA2048: 256 bytes
For RSA3072: 384 bytes
For RSA4096: 512 bytes

Response

Tc = 0xf3
e = 2
Vc =1

where —

I = ID of created Public Wrap Key (2 bytes)

338 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.52 RANDOMIZE OTP AEAD Command

Create a new OTP AEAD using random data for key and private ID.

31.52.1 Shell Example

Generate a new OTP AEAD using OTP AEAD Key 0xc5f4 and put the result in file aead.

yubihsm> otp aead_random 0 0xc5f4 aead

31.52.2 Interactive Mode

yubihsm> otp aead_random e:session, w:key_id, F:aead

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* key_id Required.

Object ID of an OTP AEAD key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
 aead Required.

The generated OTP AEAD.

Possible Values: Path to file or - for stdout

Default Value: stdout

Example

Generate a new OTP AEAD using OTP AEAD Key 0xc5£4 and put the result in file aead.

yubihsm> otp aead_random ©® 0xc5f4 aead

31.52.3 Command Line Mode

$ yubihsm-shell -a randomize-otp-aead -i <key_id> [--out <aead> --authkey <authKeyID> -p
—,<password>]
31.52. RANDOMIZE OTP AEAD Command 339

YubiHSM 2 User Guide

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of an OTP AEAD key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* --out=STRING

The generated OTP AEAD.

Possible Values: Path to file or stdout

Default Value: stdout

Example

Generate a new OTP AEAD using OTP AEAD Key 0xc5£4 and put the result in file aead.

$ yubihsm-shell -a randomize-otp-aead -i 0xc5f4 --out aead

31.52.4 Protocol Details

Command

Tc = 0x62
Lc = 2
Vc =1

where —

I = Object ID for the OTP AEAD Key (2 bytes)

Response

Tr Oxe2
Lr = 36
Vr = A

where —

A = Nonce concatenated with AEAD (36 bytes)

340 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.53 RESET DEVICE Command

Resets and reboots the device, deletes all Objects and restores the default Options and Authentication Key.

31.53.1 Shell Example

Send reset over Session 0.

yubihsm> reset 0
Device successfully reset

31.53.2 Interactive Mode

yubihsm> reset e:session

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
Example

Send reset over Session 0.

yubihsm> reset 0
Device successfully reset

31.53.3 Command Line Mode

$ yubihsm-shell -a reset [--authkey <authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

31.53. RESET DEVICE Command 341

YubiHSM 2 User Guide

Example

Send reset over Session 0.

$ yubihsm-shell -a reset
Device successfully reset

31.53.4 Protocol Details

Command
Tc = 0x08
Lc =0
Ve =0
Response
Tr = 0x88
Lr = 0
Vr = @

31.54 REWRAP OTP AEAD Command

Re-encrypt a Yubico OTP AEAD from one OTP AEAD Key to another OTP AEAD Key.

31.54.1 Shell Example

N/A

31.54.2 Interactive Mode

yubihsm> otp rewrap e:session, w:id_from, w:id_to, i:aead_in, F:aead_out

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

¢ id_from Required.

Object ID of the OTP AEAD used to unwrap. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

¢ id_to Required.

342 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Object ID of the OTP AEAD used to wrap. Object ID is a 2 bytes integer. Can be specified in hex or

decimal.
* aead_in Required.
OTP AEAD to unwrap.
Default Format: binary
» aead_out Required.

OTP AEAD to wrap

31.54.3 Command Line Mode

This command is not available in command line mode.

31.54.4 Protocol Details

Command

Tc = 0x63

Lc =2+ 2 + 36
Ve =TI1 || I2 || A

where —

I1 =Key ID from (2 bytes)

I2 =Key ID to (2 bytes)

A = Nonce concatenated with AEAD (36 bytes)

Response

Tr Oxe3
Lr 36
Vr = A

where —

A = Nonce concatenated with AEAD (36 bytes)

31.55 SESSION MESSAGE Command

Sends a wrapped command for a previously established session. The command is encrypted and authenticated.

31.55. SESSION MESSAGE Command

343

YubiHSM 2 User Guide

31.55.1 Example

Send an echo over Session 0:

yubihsm> echo 0 Oxff 1
Response (1 bytes):
ff

31.55.2 Protocol Details

Command

Tc = 0x05

Lc =1 + Linner_c + 8
Ve =S | | Ic | | Mc
where —

S = Session ID (1 byte)
Linner_c = Length of the encrypted inner command (2 bytes)

Mc = CMAC of the outer command (8 bytes)

Response

Tr = 0x85

Lr = 1 + Linner_r + 8
Vr =S | | Ir | | Mr
where —

S = Session ID (1 byte)
Linner_r = Length of the encrypted inner response (2 bytes)

Mr = CMAC of the outer response (8 bytes)

31.56 SET INFORMAT Command

Set global input format. When set to something other than default, all future input is expected to have the set format.

31.56.1 Interactive Mode

yubihsm> set informat I:format

344 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Parameters

 format Required.

Input format. default resets the default expected input format, which can be different for different
commands.

Possible Values: default, base64, binary, PEM, password, hex, ASCII

Example

Set input format to PEM.

yubihsm> set informat PEM

31.56.2 Command Line Mode

Setting global input format is not possible in command line mode. However, individual commands can be set to expect
a certain input format by using the --informat=ENUM flag.

31.57 SET LOG INDEX Command

Inform the device what the last extracted log entry is so logs can be reused. Mostly of practical use when forced auditing
is enabled.

31.57.1 Shell Example

Set log index 41 as the last extracted entry.

yubihsm> audit set 0 41

31.57.2 Interactive Mode

yubihsm> audit set e:session, w:index

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
¢ index Required.
Log index.
Possible Values: 1-60

31.57. SET LOG INDEX Command 345

YubiHSM 2 User Guide

Example

Set log index 41 as the last extracted entry.

yubihsm> audit set 0 41

31.57.3 Command Line Mode

$ yubihsm-shell -a set-log-index --log-index <index> [--authkey <authKeyID> -p

-.<password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be

specified in hex or decimal.
Default Value: 1

* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not

specified.

* --log-index=INT Required.
Log index.
Possible Values: 1-60

Example

Set log index 41 as the last extracted entry.

$ yubihsm-shell -a set-log-index --log-index 41

31.57.4 Protocol Details

Command

Tc 0x67
Le = 2
Vc =1

where —

I = Index to set as last read log (2 bytes)

346

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Response
Tr = 0xe7
Lr = 0
Vr = 0@

31.58 SET OPTION Command

Set device-global options that affect general behavior. Each invocation of this command sets a single option, which is

represented as a TAG-LENGTH-VALUE (TLV).

31.58.1 Shell Example

Turn off audit logging for Sign HMAC (command 53) and Verify HMAC (command 5c).

yubihsm> put option O command_audit 53005c00

31.58.2 Interactive Mode

yubihsm> put option e:session, o:option, i:data

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* option Required.

Device option name. fips-mode option is only applicable in FIPS compatible YubiHSMs.

Possible Value: algorithm-toggle, command-audit, fips-mode, force-audit
 data Required.
Value of option.

Default Input Format: hex

Example

Turn off audit logging for Sign HMAC (command 53) and Verify HMAC (command 5c).

yubihsm> put option 0 command-audit 53005c00

31.58. SET OPTION Command

347

YubiHSM 2 User Guide

31.58.3 Command Line Mode

$ yubihsm-shell -a put-option --opt-name <option> --opt-value <value> [--authkey
—.<authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

* --opt-name=STRING Required.
Device option name. fips-mode option is only applicable in FIPS compatible YubiHSMs.
Possible Values: algorithm-toggle, command-audit, fips-mode, force-audit

e --opt-value=STRING Required.
Device option value.

Default input format: hex

Example

Set log index 41 as the last extracted entry.

$ yubihsm-shell -a put-option --opt-name command-audit --opt-value 53005c00

31.58.4 Protocol Details

Command

Tc = Ox4f
Lc = 3 + Lo
Ve = TO

where —

To = The TLV encoding of the selected option

Lo = The option-specific length in bytes

The options currently supported are the following:
TAG is 1 byte

LENGTH is 2 bytes

VALUE is Lo bytes

348 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Tags.

force-audit = 0x01
command-audit = 0x03
algorithm-toggle = 0x4 (>=2.2.0)
fips-mode = 0x05 (>=2.2.0)

Values.

OFF 0x00 (Disabled)
ON = 0x01 (Enabled)
FIX = 0x02 (Enabled, only possible to turn off through factory reset)

The defined options are as follows:
With Force audit set, the device will refuse operations as long as the Logs Store is full. It takes a 1 byte value option.

Command audit can be used to toggle whether a specific command should be logged, this takes tuples of command
number and option value.

Algorithm toggle allows the user to selectively disable individual algorithms for the whole device. This option
can only be toggled on a freshly reset device, i.e. one with only the default Authentication Key. This takes a tuple of
algorithm number and option value.

FIPS mode is only available on FIPS devices and can only be toggled on a freshly reset device, i.e. one with only the
default Authentication Key present. It disables algorithms that are not allowed by FIPS 140. This step is required as
part of setting the device in the approved mode of operation, together with deleting the default Authentication Key (see
Section 3.2 of the YubiHSM FIPS Security Policy).

Response
Tr = Oxcf
Lr = 0
Vr = 0

31.59 SET OUTFORMAT Command

Set global output format. When set to something other than default, all future output will be in the set format.

31.59.1 Interactive Mode

yubihsm> set outformat I:format

31.59. SET OUTFORMAT Command 349

https://www.yubico.com/products/hardware-security-module/
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3916.pdf

YubiHSM 2 User Guide

Parameters

 format Required.

Output format. default resets the default output format, which can be different for different com-
mands

Possible Values: default, base64, binary, PEM, password, hex, ASCII

Example

Set output format to PEM.

yubihsm> set outformat PEM

31.59.2 Command Line Mode

Setting global output format is not possible in command line mode. However, individual commands can be set to output
in a certain format by using the --outformat=ENUM flag.

31.60 SIGN ATTESTATION CERTIFICATE Command

Get attestation of an Asymmetric Key, output is an X.509 certificate.

31.60.1 Shell Example

Attest Asymmetric Key 0x79c¢3 using attestation key ® (builtin).

yubihsm> attest asymmetric ©® 0x79c3 0

MIIDeTCCAmGgAwIBAgIQaa8FkvRhgntp5HjyyCfilzANBgkqhkiGO9wOBAQsSFADAN
MSUwIwYDVQQDDBXxZdWIpSFNNIEFOAGVzdGFOaWIuICgxMjMONTYpMCAXDTE3MDEwW
MTAwWMDAWMFoYDzIwNzExMDA1MDAwWMDAwWW jAoMSYwJAYDVQQDDB1ZdWIpSFNNIEFQ
dGVzdGF0aW9uIGlk0jB4Nz1 jMzCCASIwDQYIKoZIhvcNAQEBBQADggEPADCCAQoC
ggEBAMYpAzHar0®syanQEiRqWy8WDOS5qET jDulo2txNBDwyMCNgeEYzo/uglUXLEm
Z3j6Dd8EcdY9upHoqVpLduB+GIt+UEq5DeMN5Rzj2QZ/1QMELMdaD90Dc707aPvKT
/0Aujlaz89v£fg7 jEVWBTPWquyFaxaCBoz8WWta9j5]xRppQpR27ub43950 £X3wpW
btv1NLMxOQAQADQEmM2V3TEhnbo6T5XsgC780d0ikyJw2TPO62rQXSY7GRuXob/Qa
INsJRXbbydqUXDHFNg8GnSKL8dHsNdf7b0OSdAV6V1w30IFbJ2uoW2EKGmFIqYiint
EVyyPMMQwFO9r9HVpLF83TBaYoMCAWEAAaOBnTCBmjATBgorBgEEAYLECgQBBAUE
AwIAADATBgorBgEEAYLECgQCBAUCAX6EgDASBgorBgEEAYLECGQDBAQDAGABMBMG
CisGAQQBgsQKBAQEBQMDAAABMBKGCisGAQQBgsQKBAUECWMJAAAAAAAAAARAMBIG
CisGAQQBgsQKBAYEBAICecMwFgYKKwYBBAGCXAOECQQIDAZyc2FrZXkwDQYJKoZI
hvcNAQELBQADggEBABRReYze+KRfevrgyI3C2aLAWSiQRjJ6vvaP1Fh4bOw4X2HC
rLAT150h405eH/aXVNv+368FW1QhcY68 jKDgDoeckrlt9thFxaphasd/Wt1Pbqgzj
trnEillYjjP6rddyCR1yitmnQ3Qnsk3wlmTE/AtzmD0i7V/wNymilB790FDGmB6P
d1VI7zGUHtL1jlqeyY4/ETqKuPDzZY5RUPYr08/iPzy64AdtDXt1e39n9pTcohp?
PSQQe36gU7vt9+5SebEjOCF/qTk317L1R42TfeHFSJ1gBTHSWcuvDORNIXDHTcco
bI+wE2dCcnjyLU9dr5tkNsD3k5pscuTmpBGFD1g=

350 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.60.2 Protocol Details

Command

Tc = 0x64
Lc 2 + 2
Vc I || A

where —
I = Object ID of the Asymmetric Key to attest (2 bytes)
A = Object ID of the Asymmetric Key used for attestation (2 bytes)

If A is O the internal attestation key is used.

Response

Tr Oxe4d
Lr LX
Vr = X

where —

X = DER encoded X.509 attestation

31.61 SIGN ECDSA Command

Computes a digital signature using ECDSA on the provided data.

31.61.1 Shell Example

Sign data in file data using key 0x52b6 and put the result in file sig.

yubihsm> sign ecdsa 0 0x52b6 ecdsa-sha256 data sig

31.61.2 Protocol Details

Command

Tc 0x56
Lc 2 + LD
Vce=TI]| D

where —
I = Object ID of the Asymmetric Key (2 bytes)
D=H
The DSI for ECDSA is a possibly zero-left-padded hash of the data, H.

31.61. SIGN ECDSA Command 351

YubiHSM 2 User Guide

Response

Tr = 0xd6
Lr = LDS
Vr = DS

where —
DS = Resulting signature

The length of DS, LDS, depends on the ALGORITHMS used and equals the length of the signature plus its
DER encoding.

31.62 SIGN EDDSA Command

Computes a digital signature using EADSA on the provided data.

31.62.1 Example

Perform an EdADSA signature with key Oxddf6 of the content of file data:

yubihsm> sign eddsa 0 0xddf6 ed25519 data
wZ1 jrOstOLPUMHGrXDnpAb5Wxo079+wX/vQkb/6K34t0d8se
QfLNRVTonfErttkWUAz/UlNtaG4XJYnY8vabCQ==

31.62.2 Protocol Details

Command

Tc = 0x6a
Lc 2 + LD
Vc I || D

where —

I = Object ID of the Asymmetric Key (2 bytes)
The DSI for EADSA is the raw data D.

DSI=D

For a given DSI, the command will generate a digital signature DS. The length of DS, LDS, depends on the
Algorithm used. At this time only Ed25519 is implemented.

DS = EdDSA(DSI). Key is omitted
LDS = 0x0040 bytes

352 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Response

Tr = Oxea
Lr = LDS
Vr = DS

where —

DS = Resulting signature

31.63 SIGN HMAC Command

Perform an HMAC operation in device and return the result.

31.63.1 Shell Example

Perform an HMAC operation using the HMAC Key 0x7cf2.

yubihsm> hmac 0 0x7cf2 666£f6£626172
4cl17el17300a51a3f8aeebal31e9c680e4e40b429aald547807efd8e3d95ccd39

31.63.2 Protocol Details

Command

Tc
Lc
Vc

0x53
2 + LD
I[[D

where —
I = Object ID of the HMAC Key (2 bytes)
D = Data to HMAC

Response

Tr
Lr
Vr

0xd3
LR
R

where —

R = HMAC Response, 20, 32, 48 or 64 bytes depending on the Algorithm.

31.63. SIGN HMAC Command

353

YubiHSM 2 User Guide

31.64 SIGN PKCS1 Command

Computes a digital signature using RSA-PKCS1v1.5 on the provided data.

31.64.1 Shell Example

Sign the data in the file test using rsa-pkcsl-sha256.

yubihsm> sign pkcslv1l_5 0 0xlel5 rsa-pkcsl-sha256 test
eu9HQceSs0zsUogV1oovRRcDGtkBj5AIp2Nnk6LWT4KbQZX8ac+vmFtVot jDIF9PkQIMA8K
sfUGvXAxpnvUyin3BjGvzENu5XRi+Z0GP4m8777zbDi1v7FKQSx8/KdZf4tul IsL4rM4M+uH
/QoQ83vity4c63QjcS1ZIQDsdHNn9r3E50r3QgBo®6yK2RA8W3WYGloSPvDaGu7L87CDFy
MniAQB//Sw7bYr4hbVpKIWi6q4VPhBKdaB6+FzTmYrqsSv1vwekOV4Lbvyel TH1h9PpFuSF
ZeGl/i1gkIeS02X1KNLa4+AO+H+TYUOP3b6Qlhs3£7e4AFFWKE61PpDHIA==

31.64.2 Interactive Mode

yubihsm> sign pkcslvl_5 e:session, w:key_id, a:algorithm, i:data=-, F:out=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

 Algorithm Required.
Signing algorithm.
Possible Values: rsa-pkcsl-shal, rsa-pkcs1-sha256, rsa-pkcs1-sha384, rsa-pkcs1-sha512
* data
Data to sign.
Possible Values:Path to file or - for stdin
Default Value: stdin
Default Input Format: binary
* out
Signed data.
Possible Values: Path to file or - for stdout
Default Value: stdout
Default Input Format: PEM

354 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Sign the data in the file test using rsa-pkcsl-sha256.

yubihsm> sign pkcslvl_5 0 0xlel5 rsa-pkcsl-sha256 test
eu9HQceSs0zsUogV100vRRcDGtkBj5ATIp2Nnk6LWT4KbQZX8ac+vmFtVot jDIFIPkQIMASK
sfUGvXAxpnvUyin3BjGvzENu5XRi+Z0GP4m8777zbDi1v7FKQSx8/KdZf4tulIsL4rM4M+uH
/QoQ83viWty4c63QjcS1ZIQDsdHN9r3E50r3QgBo®6yK2RA8W3WYGloSPvDaGu7L87CDFy
MniAQB//Sw7bYr4hbVpKIWi6q4VPhBKdaB6+FzTmYrqsSv1vwekOV4Lbvyel TH1h9PpFuSF
ZeGl/i1gkIeS02X1KNLa4+AO+H+TYUOP3b6Qlhs3f7e4AFFWKE61PpDHIAA==

31.64.3 Command Line Mode

$ yubihsm-shell -a sign-pkcslvl5 -i <key_id> -A <algorithm> [--in <data> --informat
—.<informat> --out <out> --outformat <outformat> --authkey <authKeyID> -p <password>]

Parameters

¢ ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

e -A, --algorithm=STRING Required.

Signing algorithm.

Possible Values: rsa-pkcs1-shal, rsa-pkcs1-sha256, rsa-pkcs1-sha384, rsa-pkcs1-sha512
e --in=STRING

Data to sign.

Possible Values: Path to file or stdin

Default Value: stdin

Default Input Format: binary
* --informat=ENUM

Input data format.

Possible Values: binary, base64, hex, PEM
* --out=STRING

31.64. SIGN PKCS1 Command 355

YubiHSM 2 User Guide

Signed data.
Possible Values: Path to file or stdout
Default Value: stdout
Default Output Format: PEM
e ——outformat=ENUM
Output data format.
Possible Values: binary, base64, hex, PEM

Example

Sign the data in the file test using rsa-pkcsl-sha256.

$ yubihsm-shell -a sign-pkcslvl5 -i Oxlel5 -A rsa-pkcsl-sha256 --in test
eu9HQceSs0zsUogV100vRRcDGtkBj5AIp2Nnk6LWT4KbQZX8ac+vmFtVot jDIFIPkQIMA8K1s fUGVXAxpnvUyin, .
—3BjGvzENu5XRi+Z0GP4m8777zbDi1v7FKQSx8/KdZf4tulIsL4rM4M+ul/
—QoQ83viity4c63QjcS1ZIQDsdHNn9r3E50r3QgBo06yK2RA8W3WYGloSPv DaGu7L87CDFyMniAQB//

- Sw7bYr4hbVpKIWi6q4VPhBKdaB6+FzTmYrqsSv1vwekOV4Lbvyel TH1h9PpFuSFZeGl/
-»11gkIeS02X1KNLa4+AO+H+TYUOP3b6Qlhs3f7e4AFFWKE61PpDH]A==

31.64.4 Protocol Details

Command

Tc = 0x47
Lc 2 + LD
Vc I || D

where —
I = Object ID of the Asymmetric Key (2 bytes)
D = Digest

The Digest can be either a raw hash of data, where DigestInfo will be applied in the device, or DigestInfo
+ hash. Hashes supported are SHA-1, SHA-256, SHA-384 and SHA-512.

Response

Tr = 0xc7
Lr = LDS
Vr DS

where —

DS = Resulting signature

356 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.65 SIGN PSS Command

Computes a digital signature using RSA-PSS on the provided data.

31.65.1 Shell Example

Sign what is in file data using key 0x79c3 and put the resulting signature in sig.

yubihsm> sign pss 0 0x79c3 rsa-pss-sha256 data sig

31.65.2 Interactive Mode

yubihsm> sign pss e:session, w:key_id, a:algorithm, i:data=-, F:out=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

 Algorithm Required.
Signing algorithm.
Possible Values: rsa-pss-shal, rsa-pss-sha256, rsa-pss-sha384, rsa-pss-sha512
* data
Data to sign.
Possible Values: Path to file or - for stdin
Devault Value: stdin
Default Input Format: binary
e out
Signed data.
Possible Values: Path to file or - for stdout
Default Value: stdout

Default Input Format: PEM

31.65. SIGN PSS Command 357

YubiHSM 2 User Guide

Example

Sign what is in file data using key 0x79¢3 and put the resulting signature in sig.

yubihsm> sign pss 0 0x79c3 rsa-pss-sha256 data sig

31.65.3 Command Line Mode

$ yubihsm-shell -a sign-pss -i <key_id> -A <algorithm> [--in <data> --informat <informat>
<, --out <out> --outformat <outformat> --authkey <authKeyID> -p <password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified

e -i, --object-id=SHORT Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

e -A, --algorithm=STRING Required.

Signing algorithm.

Possible Values: rsa-pss-shal, rsa-pss-sha256, rsa-pss-sha384, rsa-pss-sha512
e --in=STRING

Data to sign.

Possible Values: Path to file or stdin

Default Value: stdin

Default Input Format: binary
* --informat=ENUM

Input format.

Possible Values: binary, base64, hex, PEM
¢ —-out=STRIN

Signed data.

Possible Values: Path to file or stdout

Default Value: stdout

Default Output Format: PEM

e --outformat=ENUM

358 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Output format.
Possible Values: binary, base64, hex, PEM

Example

Sign what is in file data using key 0x79c3 and put the resulting signature in sig.

$ yubihsm-shell -a sign-pss -i 0x79c3 -A rsa-pss-sha256 --in data --out sig

31.65.4 Protocol Details

Command
Tc = 0x55
Lc =2+ 1+ 2 + LD

Vce=I || M || SI|ID

where —
I = Object ID of the Asymmetric Key (2 bytes)
M = Hash ALGORITHMS to use for MGF1
S = Salt len (2 bytes)
D = Hashed data (20, 32, 48 or 64 bytes)
The DSI of EMSA-PSS is as defined in RFC 3447.
DSI = EMSA-PSS-ENCODE((M, emBits, Hash, MGF, sLen).
Hash is a supported hash Algorithm
MGF is a supported masking function
sLen is the length of the Salt

The DSI is generated internally and only the Hash of the data and the Salt length are provided.

Response

Tr 0xd5
Lr = LDS
Vr = DS

where —

DS = Resulting signature

31.65. SIGN PSS Command 359

YubiHSM 2 User Guide

31.66 SIGN SSH CERTIFICATE Command

Produce an SSH Certificate signature. The certificate can then be used to login to hosts.

31.66.1 Shell Example

Produce a new SSH Certificate.

yubihsm> certify 0 Oxabcd 0x1234 rsa-pkcs-sha256 req.dat cert.dat

31.66.2 Interactive Mode

yubihsm> certify e:session, w:key_id, w:template_id, a:algorithm, i:infile=-, F:outfile=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

* key_id Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

 template_id Required.

Template Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* algorithm Required.

Signing algorithm.

Possible Values: rsa-pkcs1-shal, rsa-pkcs1-sha256, rsa-pkcs1-sha384, rsa-pkcs1-sha512
* data

Certificate request.

Possible Values: Path to file or - for stdin

Default Value: stdin

Default Input Format: binary
* out

Signed SSH certificate.

Possible Values: Path to file or - for stdout

Default Value: stdout

Default Input Format: binary

360 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Example

Produce a new SSH Certificate.

yubihsm> certify 0 Oxabcd 0x1234 rsa-pkcs-sha256 req.dat cert.dat

31.66.3 Command Line Mode

$ yubihsm-shell -a sign-ssh-certificate -i <key_id> --template-id <template_id> -A
—.<algorithm> [--in <data> --informat <informat> --out <out> --authkey <authKeyID> -p
—,<password>]

Parameters

e ——authkey=INT

The ObjectID of the authentication key used to open a session. Object ID is a 2 bytes integer. Can be
specified in hex or decimal.

Default Value: 1
* -p, --password=STRING Required.

The password to authentication key used to open a session. The password is prompted for if not
specified.

e -i, --object-id=SHORT Required.

Object ID of the asymmetric key to sign with. Object ID is a 2 bytes integer. Can be specified in hex
or decimal.

e ——template-id=INT Required.

Template Object ID. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
e -A, --algorithm=STRING Required.

Signing algorithm.

Possible Values: rsa-pkcsl-shal, rsa-pkcs1-sha256, rsa-pkcs1-sha384, rsa-pkcs1-sha512
e —-in=STRING

Certificate request

Possible Values: Path to file or stdin

Default Value: stdin

Default Input Format: binary
e --informat=ENUM

Input data format.

Possible Values: binary, base64, hex, PEM
* --out=STRING

31.66. SIGN SSH CERTIFICATE Command 361

YubiHSM 2 User Guide

Signed SSH certificate.
Possible Values: Path to file or stdout
Default Value: stdout

Default Output Format: binary

Example

Produce a new SSH Certificate.

$ yubihsm-shell -a sign-ssh-certificate -i Oxabcd --template-id 0x1234 -A rsa-pkcs-
—»sha256 --in req.dat --out cert.dat

31.66.4 Protocol Details

Command
Tc = 0x5d
Llc =2+ 2+ 1+ 4 + 256 + LR

Ve=I || TIlAIINIISIIR

Sign and SSH Certificate by using the given Asymmetric Key and SSH Template.
where —

I = Object ID of the Asymmetric Key (2 bytes)

T = Object ID of the SSH Template (2 bytes)

A =ALGORITHMS (1 byte)

N = Timestamp with the definition of Now (4 bytes)

S = Signature over the request and timestamp (256 bytes)

R = Request (LR bytes)

Response

Tr 0xd6
Lr = LS
Vr S

where —

S = Certificate Signature (LS bytes)

362 Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

31.67 UNWRAP DATA Command

Decrypt (unwrap) data using a Wrap Key.

31.67.1 Shell Example

yubihsm> decrypt aesccm O 0x5b3a MRkj6BOAAAAAAAAAA004dkIeAYoPvwTV/M/JX1dwKnLgnERO1hSW4wPS
Hello world!

31.67.2 Interactive Mode

yubihsm> decrypt aesccm e:session, w:key_id, i:data=-

Parameters

* session Required.

The ID of the authenticated session to send the command over.

Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
* key_id Required.

Object ID of the wrap key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.
* data

Data to decrypt/unwrap.

Possible Values: Path to file or - for stdin

Default Value: stdin

Default Input Format: base64

Example

yubihsm> decrypt aesccm 0 0x5b3a MRkj6BOAAAAAAAAAA004dkIeAYoPvwTV/M/JX1dwKnLgnERO1hSW4wPS
Hello world!

31.67.3 Command Line Mode

This command is not available in command line mode.

31.67. UNWRAP DATA Command 363

YubiHSM 2 User Guide

31.67.4 Protocol Details

Command

Tc = 0x69

Lc =2 + 13 + LD + 16
Vce=I||NJ|[DIJ|M
where —

I = Object ID of a Wrap Key (2 bytes)
N = Nonce (13 bytes)

D = Data to be unwrapped

M = Mac (16 bytes)

Response

Tr 0xe9
Lr LD
Vr =D

where —

D = Unwrapped data

31.68 VERIFY HMAC Command

Verify a generated HMAC.

31.68.1 Shell Example

N/A

31.68.2 Protocol Details

Command

Tc = 0x5c

Lc =2 +LH + LD
Vce=I || HI||D
where —

I = Object ID of the HMAC Key (2 bytes)
H=HMAC (20, 32, 48 or 64 bytes)
D = Data

364

Chapter 31. YubiHSM Command Reference

YubiHSM 2 User Guide

Response

Tr = 0xdc
Lr = 1
Vr =V

where —
V = Verified (1 byte)

V will have the value 1 if verification succeeded and ® otherwise.

31.69 WRAP DATA Command

Encrypt (wrap) data using a Wrap Key.

31.69.1 Shell Example

Using Wrap Key 0x5b3a encrypt the string Hello world!.

yubihsm> encrypt aesccm 0 0x5b3a "Hello world!"
MRk j6BOAAAAAAAAAA004dkIeAYoPvwTV/M/JX1dwKnLgnERO1hSW4wPS

31.69.2 Interactive Mode

yubihsm> encrypt aesccm e:session, w:key_id, i:data=-

Parameters

* session Required.
The ID of the authenticated session to send the command over.
Possible Values: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

¢ key_id Requiredc.

Object ID of the wrap key. Object ID is a 2 bytes integer. Can be specified in hex or decimal.

* data
Data to encrypt/wrap.
Possible Values: Path to file or - for stdin
Default Value: stdin

Default Input Format: binary

31.69. WRAP DATA Command

365

YubiHSM 2 User Guide

Example

Using Wrap Key 0x5b3a encrypt the string Hello world!.

yubihsm> encrypt aesccm 0 0x5b3a "Hello world!"
MRk j6BOAAAAAAAAAA004dkIeAYoPvwTV/M/JX1dwKnLgnERO1hSW4wPS

31.69.3 Command Line Mode

This command is not available in command line mode.

31.69.4 Protocol Details

Command

Tc = 0x68
Lc 2 + LD
Vc I || D

where —
I = Object ID of the Wrap Key (2 bytes)
D = Data to be wrapped

Response

Tr = 0xe8

Lr = 13 + LD + 16
Ve =N || D || XM
where —

N = Nonce (13 bytes)
D = Wrapped data (LW = 1 + LD bytes)

The wrapped data includes a leading encrypted nul byte that is added automatically by the YubiHSM2.
This byte is checked by UNWRAP DATA and therefore must be added if manually generating an encrypted
message offline.

M = Mac (16 bytes)

366 Chapter 31. YubiHSM Command Reference

CHAPTER
THIRTYTWO

GLOSSARY

A

Application authentication key AES key used to authenticate to the device. Performs operations according to its
defined capabilities.

Audit key AES authentication key with rights to access audit log.
authentication key Performs operations according to its defined capabilities.

authentication key: Default Factory-installed Advanced Encryption Standards (AES) key used when initializing the
device. Possesses all capabilities.

C
Capability A description of what operations are allowed on or with an object such as a key.

Column Encryption Key (CEK) CEKs are content-encryption keys used to encrypt data in a Microsoft SQL Server
Always Encrypted database.

Column Master Key (CMK) CMKs are key-protecting keys used to encrypt CEKs for a Microsoft SQL Server Always
Encrypted database.

Cryptographic API Next Generation (CNG) A CNG is Microsoft’s cryptographic architecture, which allows devel-
opers to implement applications with features for encryption, electronic signatures, certificate management, etc.

D

Delegated capability An operation that an object is allowed to perform by virtue of receiving those permissions from
the authentication key or wrap key that was used to create it.

Domain A logical “container” for objects that can be used to control access to objects on the device.
G

Guarded Host This is an attested Hyper-V host machine with a Trusted Platform Module (TPM) that can run shielded
Hyper-V VMs.

H

Host Guardian Services (HGS) This is a Windows Server role that is composed of the Attestation Service and Key
Protection Services.

Hyper-V Virtual Machine (VM) Microsoft Hyper-V is a native hypervisor that can create VMs on x86-64 systems
running Windows.

K
Key custodian Holder of a wrap key share.

Key Storage Provider (KSP) This is a Dynamic Link Library (DLL) that is loaded by Microsoft CNG. KSPs can be
used to create, delete, export, import, open and store keys.

367

YubiHSM 2 User Guide

M

M of n Scheme where a Wrap key is split into a total number of shares (n) held by key custodians, where a minimum
number of shares (m) (sometimes called a quorum and sometimes a privacy threshold) is needed to regenerate and use
the key.

(0)

Object ID (OID) These are unique identifiers for any kind of object stored on YubiHSM2. An ID can range from 1 to
65535; however, the device can only hold a maximum of 256 unique objects.

S

Shielded VM This is a Hyper-V VM with a virtual TPM,; it is encrypted using BitLocker, and can run only on attested
guarded hosts in a guarded fabric.

SQL Server Management Studio (SSMS) SQL Server Management Studio (SSMS) is a software application that is
used for configuring, managing, and administering all components within Microsoft SQL Server.

T

Trusted Computing Group (TCG) This is a group formed by AMD, Hewlett-Packard, IBM, Intel and Microsoft to
implement Trusted Computing concepts across personal computers.

Trusted Platform Module (TPM) This is a cryptographic chip on a device that stores RSA encryption keys specific
to the host system for hardware authentication.

W

Wrap key An AES key used to protect key material when exporting to file from device and when importing from file
to device. Key material exported under wrap will be encrypted and can only be decrypted using the wrap key.

368 Chapter 32. Glossary

CHAPTER
THIRTYTHREE

COPYRIGHT

© 2015-2025 Yubico AB. All rights reserved.

33.1 Trademarks

Yubico and YubiKey are registered trademarks of Yubico AB. All other trademarks are the property of their respective
owners.

33.2 Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design,
and manufacturing. Yubico shall have no liability for any error or damages of any kind resulting from the use of this
document.

The Yubico Software referenced in this document is licensed to you under the terms and conditions accompanying the
software or as otherwise agreed between you or the company that you are representing.

33.3 Contact Information

Yubico AB
Givlegatan 22
113 30 Stockholm
Sweden

369

YubiHSM 2 User Guide

33.4 License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

33.5 Getting Help

Documentation is continuously updated on https://docs.yubico.com/ (this site). Additional support resources are avail-
able in the Yubico Knowledge Base.

Click the links to:
* Submit a support request

¢ Contact our sales team

33.6 Feedback

Yubico values and welcomes your feedback. If you think you may have discovered a flaw in our product, please submit
a support request at https://support.yubico.com/hc/en-us and provide as much detail as you can.

33.7 Document Updated

2025-06-17 00:18:01 UTC

370 Chapter 33. Copyright

http://www.apache.org/licenses/LICENSE-2.0
https://docs.yubico.com/
http://yubi.co/support
https://www.yubico.com/support/contact/
https://support.yubico.com/hc/en-us

	Introduction
	YubiHSM 2 Device Specifications
	Cryptographic Interfaces
	Advanced Encryption Standard (AES)
	RSA
	Elliptic Curve Cryptography (ECC)
	Hashing Functions
	Key Wrap
	Random Numbers
	Attestation
	Performance
	Storage Capacity
	Management
	Physical Characteristics
	Temperatures
	Host Interface

	YubiHSM 2 Software Development Kit (SDK)
	System Requirements

	Quick Start Tutorial
	Set Up the Environment
	Start Up
	Set Up YubiHSM 2 Connection
	Sessions
	Open
	Close
	List
	Adding a New Authentication Key
	Generate a Key for Signing
	Prepare to Sign With the New Asymmetric Key
	Export Under Wrap

	YubiHSM 2 SDK Tools And Libraries
	YubiHSM 2 Setup Tool
	Setup for EJBCA
	How It Works

	YubiHSM Shell
	YubiHSM Shell Command Syntax
	YubiHSM 2 Shell Algorithm Names

	YubiHSM 2 Connector
	HTTPS Connections
	Sample Configuration

	YubiHSM Wrap
	Libyubihsm
	HTTP Connector
	USB Connector

	Python Library
	Key Storage Provider (KSP) - Windows Only
	Additional Documentation for YubiHSM Key Storage Provider

	YubiHSM Auth
	Credentials and PIN Codes
	YubiHSM 2 Secure Channel
	Architecture Overview
	YubiHSM Auth Flowchart
	YubiHSM-Auth Software Tool
	Using YubiHSM-Auth with YubiHSM Shell

	YubiHSM 2: Backup and Restore
	Backup and Restore Using YubiHSM Shell
	Backup
	Restore

	Backup and Restore Using YubiHSM Setup
	Backup
	Restore

	Backup and Restore Using YubiHSM KSP (Windows Only)
	Identify Your Private Key Container Name
	Backup the Target Certificate
	Backup the Target Private Key
	Restore the Target Private Key
	Restore the Target Certificate

	Initial Provisioning and Deployment Guide
	Known Usage Cases
	HMAC
	PKCS11 / RSA

	FIPS Mode Support Guide
	Putting YubiHSM 2 into FIPS Mode
	Validating the Mode
	Taking it out of FIPS Mode

	Using Key Storage Provider (KSP) - Windows Only
	Export your Existing Private Key and Certificate
	Import the Target Private Key
	Restore the Target Certificate
	Status Codes Reference
	Example: Creating a Code-Signing Certificate using the Key Storage Provider
	Configure the Key Storage Provider
	Authentication Key Example
	Create the Certificate Request Configuration File
	Create the Certificate Request
	Sign the Certificate Request
	Sign using Signtool
	Troubleshooting

	PKCS#11 with YubiHSM 2
	Configuration
	Logging In
	PKCS#11 on Windows
	Note for Developers
	PKCS#11 with JAVA
	Version 2.4.0 or later
	Version 2.3.2 or earlier
	yubihsm-setup
	yubihsm-shell

	Software Operations
	PKCS#11 Attributes
	Capabilities and Domains
	PKCS#11 Objects
	PKCS#11 Functions
	PKCS#11 Vendor Definitions
	Configuration File Sample
	INIT_ARGS Sample
	PKCS#11 Tool Compatibility, Interoperability and Known Restrictions
	pkcs11-tool
	pkcs11test
	python-pkcs11tester
	p11tool
	OpenDNSSEC

	Resetting Device to Factory Settings
	Physical Reset
	Reset Using YubiHSM Shell

	EJBCA Installation and Configuration Guide
	Prerequisites
	Configuring a New EJBCA Installation
	Configuring an Existing EJBCA Installation

	Using OpenSSH Certificates for Host Login
	Traditional Method
	OpenSSH CA
	OpenSSH Certificates with YubiHSM 2
	Example: OpenSSH built-in support for Signing SSH certificates
	Signing SSH Certificate Requests
	High-level Description and components
	SSH Template

	SSH Certificate Request
	Signing an SSH Certificate Request
	Example request
	Example: Signing SSH certificates using templates and signing requests
	Example: constraint violation

	OpenSSL with libp11 for Signing, Verifying and Encrypting, Decrypting
	Signing and Verifying
	RSA-PKCS#1 v1.5
	RSA-PSS
	ECDSA

	Encrypting and Decrypting
	RSA-PKCS
	RSA-OAEP
	ECDH

	OpenSSL with YubiHSM 2 via engine_pkcs11 and yubihsm_pkcs11
	Example: Creating an Alias
	Example: Generating a Key in the Device
	Example: Certificate Request
	Example: Retrieve 64 Bytes of Data
	Example: Adding req entries
	Example: Requesting certificate existing RSA key
	Example: Self-Signed Certificate Existing RSA Key
	Example: s_server with RSA Key and Certificate
	Example: s_server with ECDSA Key and Certificate

	Using OpenSC pkcs11-tool
	Creating Digital Signatures
	RSA-PSS
	RSA-PKCS#1 v1.5
	ECDSA

	Performing Decryption
	RSA-PKCS#1 v1.5
	RSA-OAEP
	Derive ECDH Key
	Obtaining Random Data

	YubiHSM and OpenSSL on Windows
	Overview
	Installation
	YubiHSM2 Development Kit
	OpenSC and OpenSSL Distributions
	libp11 Source
	Configuration

	Configuring YubiHSM 2 for Java Code Signing
	Prerequisites
	Operating System and SDKs

	Basic Configuration of YubiHSM 2
	Configuration File for YubiHSM 2 PKCS #11
	Configuration File of Sun JCE PKCS #11 Provider with YubiHSM 2
	Environment Variables
	Java Keystore
	Signing JAR files
	Verifying signed JAR files
	Windows PowerShell script for generating keys and certificates
	Parameters
	Example of how to execute the PowerShell script:

	Linux Bash Script for Generating Keys and Certificates
	Parameters

	Example of How to Execute the Bash Script
	List the Objects on YubiHSM 2
	Example: YubiHSM-Shell Command
	Example: Java KeyTool Command

	Using YubiHSM 2 with Java Signing Applications
	Example: Use JarSigner to sign a JAR-file
	Example: Use JarSigner to Validate a Signed JAR-file

	Signing XML files using YubiHSM 2
	A simple example
	Signing XML files
	Verifying XML digital signatures
	A real-world example: SAML metadata signing

	Example Java code using YubiHSM 2
	Setup
	Code
	Troubleshooting

	Deploying YubiHSM 2 with Active Directory Certificate Services
	Prerequisites and Preparations
	Key Splitting and Key Custodians
	Deploying YubiHSM2 with ADCS Overview
	Configuring the Windows Registry
	Setting Up Your Enterprise Certificate Authority
	To Configure ADCS
	To Configure the ADCS CA and Create the Root Key

	Installing the YubiHSM 2 Tools and Software
	About the YubiHSM Software
	Installation

	Verifying the Default Configuration of the YubiHSM 2
	Configuring the Primary YubiHSM 2 Device
	Summary of Configuration Steps
	Configuration Steps
	Configure Primary YubiSHM 2 Procedure
	Verifying the Setup

	Configure the YubiHSM 2 Software on Windows
	Configure the KSP Settings in the Windows Registry
	Configure the YubiHSM 2 Connector Service

	Alternative Scenarios with CA Root Key or Subordinate CAs
	Migrating an Existing CA Root Key to YubiHSM 2
	Subordinate CAs
	Confirming the Duplicated YubiHSM 2

	Backup and Restore Key Material
	Backup the YubiHSM 2 Overview
	Backup and Restore the YubiHSM 2 Procedure Overview
	Restore Keys on the Secondary YubiHSM 2 Device
	Verify the Duplicated YubiHSM 2

	Deploying YubiHSM 2 for Microsoft Host Guardian Service (HGS) Guide
	The Host Guardian Service – Guarded Fabric Concept
	HGS Key Protection Service
	Scope of this Guide
	Prerequisites and Preparations
	Basic Setup of YubiHSM 2 and Host Guardian Service
	Install and Configuring YubiHSM 2
	Basic Deployment of HGS

	Create Signing and Encryption Keys for HGS
	Generate Signing and Encryption Keys and Certificates
	Initialize HGS with Signing and Encryption Keys and Certificates

	YubiHSM 2 for Microsoft SQL Server Deployment Guide
	YubiHSM 2 for Microsoft SQL Server Guide
	Introduction to Always Encrypted
	Prerequisites and Preparations
	Configuration for this Integration

	Basic Setup of YubiHSM 2 and SQL Server
	Installing and Configuring YubiHSM 2
	Creating a Test Database

	Use SSMS to Generate the CMK and CEK
	Generate the CMK

	Validate Generation of the CMK
	Assign the CMK to a Database
	Generate the CEK

	Use PowerShell Script to Generate the CMK and CEK
	Create a CMK in the YubiHSM 2 with CNG Provider (KSP)
	Import SQL Server Module
	Connect to your Database
	Create SQL CMK Settings Object for your CMK
	Create CMK Metadata in Database
	Generate CEK, Encrypt with CMK, and Create CEK Metadata in Database
	Customize the Script
	Validate Generation of the CMK and the CEK

	Encrypt Database Columns
	Encrypt Database Column with PowerShell-Generated Keys
	Encrypt Database Column with SSMS-generated Keys
	Verify Encrypted Database Column

	Configure SSMS for Database Encryption

	YubiHSM 2 with Key Storage Provider for Windows Server
	Configure YubiHSM 2 Key Storage Provider (KSP) for Microsoft Windows Server
	About the YubiHSM Software
	Prerequisites and Preparations

	Key Splitting and Key Custodians
	Core Concepts
	Objects
	Object Type
	Authentication Key
	Asymmetric Key
	HMAC Key
	Opaque
	OTP AEAD Key
	Symmetric Key
	Template
	Wrap Key
	Public Wrap Key

	ALGORITHMS
	Attestation
	Details
	Certificate Extensions
	Pre-Loaded Certificates
	Intermediates:

	Capability
	Delegated Capabilities
	Protocol Details

	Domain
	Protocol Details

	Effective Capabilities (Tying It All Together)
	Create and Authenticate a Session
	Generate a Signature
	Effective Capabilities and Role Definition
	Workflow

	Errors
	FIPS
	Label
	Protocol Details

	Logs
	Object ID
	Protocol Details

	Options
	Force Audit
	Command Audit

	Origin
	Protocol Details

	Sequence
	Protocol Details

	Session

	YubiHSM Command Reference
	OPEN SESSION Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode

	AUTHENTICATE SESSION Command
	Shell Example
	Protocol Details
	Command
	Response

	OPEN SESSION ASYMMETRIC Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	BLINK DEVICE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	CHANGE ASYMMETRIC AUTHENTICATION KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	CHANGE AUTHENTICATION KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	CLOSE SESSION Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	CREATE OTP AEAD Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	CREATE SESSION Command
	Shell Example
	Protocol Details
	Command
	Response

	DECRYPT CBC Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	DECRYPT ECB Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	DECRYPT OAEP Command
	Example
	Protocol Details
	Command
	Response

	DECRYPT OTP Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	DECRYPT PKCS1 Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	DELETE OBJECT Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	DERIVE ECDH Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	DEVICE INFO Command
	Shell Example
	Interactive Mode
	Example

	Command Line Mode
	Example

	Protocol Details
	Command
	Response

	ECHO Command
	Shell Example
	Plain echo
	Echo over session 0

	Interactive Mode
	Over Encrypted Session
	Bare Command
	Parameters
	Example
	Echo over session 0
	Plain echo

	Command Line Mode
	Protocol Details
	Command
	Response

	ENCRYPT CBC Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	ENCRYPT ECB Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	EXPORT WRAPPED Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	EXPORT RSA WRAPPED Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	EXPORT RSA WRAPPED KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GENERATE ASYMMETRIC KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GENERATE HMAC KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GENERATE OTP AEAD KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GENERATE SYMMETRIC KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GENERATE WRAP KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET DEVICE PUBLIC KEY Command
	Example
	Protocol Details
	Command
	Response

	GET LOG ENTRIES Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET OBJECT INFO Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET OPAQUE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET OPTION Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET PSEUDO RANDOM Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET PUBLIC KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	GET STORAGE INFO Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	GET TEMPLATE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	IMPORT WRAPPED Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	IMPORT RSA WRAPPED Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	IMPORT RSA WRAPPED KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	LIST OBJECTS Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT ASYMMETRIC KEY Command
	Shell Example
	Protocol Details
	Command
	Response

	PUT ASYMMETRIC AUTHENTICATION KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	PUT AUTHENTICATION KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT HMAC KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	PUT OPAQUE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT OTP AEAD KEY Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	PUT SYMMETRIC KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT TEMPLATE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT WRAP KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	PUT PUBLIC WRAP KEY Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	RANDOMIZE OTP AEAD Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	RESET DEVICE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	REWRAP OTP AEAD Command
	Shell Example
	Interactive Mode
	Parameters

	Command Line Mode
	Protocol Details
	Command
	Response

	SESSION MESSAGE Command
	Example
	Protocol Details
	Command
	Response

	SET INFORMAT Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode

	SET LOG INDEX Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	SET OPTION Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	SET OUTFORMAT Command
	Interactive Mode
	Parameters
	Example

	Command Line Mode

	SIGN ATTESTATION CERTIFICATE Command
	Shell Example
	Protocol Details
	Command
	Response

	SIGN ECDSA Command
	Shell Example
	Protocol Details
	Command
	Response

	SIGN EDDSA Command
	Example
	Protocol Details
	Command
	Response

	SIGN HMAC Command
	Shell Example
	Protocol Details
	Command
	Response

	SIGN PKCS1 Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	SIGN PSS Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	SIGN SSH CERTIFICATE Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Parameters
	Example

	Protocol Details
	Command
	Response

	UNWRAP DATA Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	VERIFY HMAC Command
	Shell Example
	Protocol Details
	Command
	Response

	WRAP DATA Command
	Shell Example
	Interactive Mode
	Parameters
	Example

	Command Line Mode
	Protocol Details
	Command
	Response

	Glossary
	Copyright
	Trademarks
	Disclaimer
	Contact Information
	License
	Getting Help
	Feedback
	Document Updated

